Anisotropic effects of the levator ani muscle during childbirth.

Abstract:

:Pelvic floor dysfunction and pelvic organ prolapse have been associated with damage to the levator ani (LA) muscle, but the exact mechanisms linking them remain unknown. It has been postulated that factors such as vaginal birth and ageing may contribute to long-term, irreversible LA muscle damage. To investigate the biomechanical significance of the LA muscle during childbirth, researchers and clinicians have used finite element models to simulate the second stage of labour. One of the challenges is to represent the anisotropic mechanical response of the LA muscle. In this study, we investigated the effects of anisotropy by varying the relative stiffness between the fibre and the matrix components, whilst maintaining the same overall stress-strain response in the fibre direction. A foetal skull was passed through two pelvic floor models, which incorporated the LA muscle with different anisotropy ratios. Results showed a substantial decrease in the magnitude of the force required for delivery as the fibre anisotropy was increased. The anisotropy ratio markedly affected the mechanical response of the LA muscle during a simulated vaginal delivery. It is apparent that we need to obtain experimental data on muscle mechanics in order to better approximate the LA muscle mechanical properties for quantitative analysis. These models may advance our understanding of the injury mechanisms of pelvic floor during childbirth.

authors

Li X,Kruger JA,Nash MP,Nielsen PM

doi

10.1007/s10237-010-0249-z

subject

Has Abstract

pub_date

2011-07-01 00:00:00

pages

485-94

issue

4

eissn

1617-7959

issn

1617-7940

journal_volume

10

pub_type

杂志文章
  • Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis.

    abstract::The superficial femoral artery (SFA) is a typical atherosclerosis-prone site. We aimed to explore whether the tortuosity of the SFA associates with the occurrence of atherosclerosis and investigate how vascular tortuosity influences the characteristics of blood flow. Ten patients diagnosed with atherosclerotic disease...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01118-4

    authors: Li X,Liu X,Li X,Xu L,Chen X,Liang F

    更新日期:2019-08-01 00:00:00

  • Infant brain subjected to oscillatory loading: material differentiation, properties, and interface conditions.

    abstract::Past research into brain injury biomechanics has focussed on short duration impulsive events as opposed to the oscillatory loadings associated with Shaken Baby Syndrome (SBS). A series of 2D finite element models of an axial slice of the infant head were created to provide qualitative information on the behaviour of t...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-007-0079-9

    authors: Couper Z,Albermani F

    更新日期:2008-04-01 00:00:00

  • Strain history and TGF-β1 induce urinary bladder wall smooth muscle remodeling and elastogenesis.

    abstract::Mechanical cues that trigger pathological remodeling in smooth muscle tissues remain largely unknown and are thought to be pivotal triggers for strain-induced remodeling. Thus, an understanding of the effects mechanical stimulation is important to elucidate underlying mechanisms of disease states and in the developmen...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0298-y

    authors: Heise RL,Parekh A,Joyce EM,Chancellor MB,Sacks MS

    更新日期:2012-01-01 00:00:00

  • An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion.

    abstract::We propose and analyse the properties of a new class of models for the electromechanics of cardiac tissue. The set of governing equations consists of nonlinear elasticity using a viscoelastic and orthotropic exponential constitutive law, for both active stress and active strain formulations of active mechanics, couple...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01237-y

    authors: Propp A,Gizzi A,Levrero-Florencio F,Ruiz-Baier R

    更新日期:2020-04-01 00:00:00

  • Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods.

    abstract::The key parameters determining the elastic properties of an unidirectional mineralized bone fibril-array decomposed in two further hierarchical levels are investigated using mean field methods. Modeling of the elastic properties of mineralized micro- and nanostructures requires accurate information about the underlyin...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0190-1

    authors: Reisinger AG,Pahr DH,Zysset PK

    更新日期:2010-10-01 00:00:00

  • A two-muscle, continuum-mechanical forward simulation of the upper limb.

    abstract::By following the common definition of forward-dynamics simulations, i.e. predicting movement based on (neural) muscle activity, this work describes, for the first time, a forward-dynamics simulation framework of a musculoskeletal system, in which all components are represented as continuous, three-dimensional, volumet...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0850-x

    authors: Röhrle O,Sprenger M,Schmitt S

    更新日期:2017-06-01 00:00:00

  • Numerical modeling of the cupular displacement and motion of otoconia particles in a semicircular canal.

    abstract::Balance is achieved and maintained by a balance system called a labyrinth that is composed of three semicircular canals and the otolith organs that sense linear gravity and acceleration. Within each semicircular canal, there is a gelatinous structure called the cupula, which is deformed under the influence of the surr...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0912-8

    authors: Djukic T,Filipovic N

    更新日期:2017-10-01 00:00:00

  • Statistical shape modelling of the first carpometacarpal joint reveals high variation in morphology.

    abstract::The first carpometacarpal (CMC) joint, located at the base of the thumb and formed by the junction between the first metacarpal and trapezium, is a common site for osteoarthritis of the hand. The shape of both the first metacarpal and trapezium contributes to the intrinsic bony stability of the joint, and variability ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01257-8

    authors: Rusli WMR,Kedgley AE

    更新日期:2020-08-01 00:00:00

  • Urethral lumen occlusion by artificial sphincteric devices: a computational biomechanics approach.

    abstract::The action induced by artificial sphincteric devices to provide urinary continence is related to the problem of evaluating the interaction between the occlusive cuff and the urethral duct. The intensity and distribution of the force induced within the region of application determine a different occlusion process and p...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0897-3

    authors: Natali AN,Carniel EL,Fontanella CG,Todros S,De Benedictis GM,Cerruto MA,Artibani W

    更新日期:2017-08-01 00:00:00

  • A mathematical model for fluid shear-sensitive 3D tissue construct development.

    abstract::This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0378-7

    authors: Liu D,Chua CK,Leong KF

    更新日期:2013-01-01 00:00:00

  • Small scale membrane mechanics.

    abstract::Large scale changes to lipid bilayer shapes are well represented by the Helfrich model. However, there are membrane processes that take place at smaller length scales that this model cannot address. In this work, we present a one-dimensional continuum model that captures the mechanics of the lipid bilayer membrane at ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0528-6

    authors: Rangamani P,Benjamini A,Agrawal A,Smit B,Steigmann DJ,Oster G

    更新日期:2014-08-01 00:00:00

  • Flow plate separation of cells based on elastic properties: a computational study.

    abstract::Medical studies have consistently shown that the best defense against cancer is early detection. Due to this, many efforts have been made to develop methods of screening patient blood quickly and cheaply. These methods range from separation via differences in size, electrostatic potential, chemical potential, antibody...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1093-9

    authors: Becton M,Averett RD,Wang X

    更新日期:2019-04-01 00:00:00

  • Enhanced cancer cell invasion caused by fibroblasts when fluid flow is present.

    abstract::It has been demonstrated that interstitial fluid (IF) flow can play a crucial role in tumor cell progression. Swartz and collaborators (Cancer Cell 11: 526-538, Shields et al. 2007) demonstrated that cells that secrete the lymphoid homing chemokines CCL21/CCL19 and express their receptor CCR7 could use flow to bias th...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01128-2

    authors: Urdal J,Waldeland JO,Evje S

    更新日期:2019-08-01 00:00:00

  • Influence of power-law rheology on cell injury during microbubble flows.

    abstract::The reopening of fluid-occluded pulmonary airways generates microbubble flows which impart complex hydrodynamic stresses to the epithelial cells lining airway walls. In this study we used boundary element solutions and finite element techniques to investigate how cell rheology influences the deformation and injury of ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-009-0175-0

    authors: Dailey HL,Ghadiali SN

    更新日期:2010-06-01 00:00:00

  • Material model of pelvic bone based on modal analysis: a study on the composite bone.

    abstract::Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's mo...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0822-1

    authors: Henyš P,Čapek L

    更新日期:2017-02-01 00:00:00

  • Directional dependence of osteoblastic calcium response to mechanical stimuli.

    abstract::In adaptive bone remodeling, mechanical signals such as stress/strain caused by loading/deformation are believed to play important roles as regulators of the process in which osteoclastic resorption and osteoblastic formation are coordinated under a local mechanical environment. The mechanism by which cells sense and ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-003-0029-0

    authors: Adachi T,Sato K,Tomita Y

    更新日期:2003-11-01 00:00:00

  • Experimental analysis of the transverse mechanical behaviour of annulus fibrosus tissue.

    abstract::Uniaxial tensile and relaxation tests were carried out on annulus fibrosus samples carved out in the circumferential direction. Images were shot perpendicularly to the loading direction. Digital image correlation techniques accurately measured the evolution of full displacement fields in both transverse directions: pl...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0524-x

    authors: Baldit A,Ambard D,Cherblanc F,Royer P

    更新日期:2014-06-01 00:00:00

  • A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth.

    abstract::Growth and remodeling in the heart is driven by a combination of mechanical and hormonal signals that produce different patterns of growth in response to exercise, pregnancy, and various pathologies. In particular, increases in afterload lead to concentric hypertrophy, a thickening of the walls that increases the cont...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01385-6

    authors: Estrada AC,Yoshida K,Saucerman JJ,Holmes JW

    更新日期:2020-09-24 00:00:00

  • In vivo estimation of elastic heterogeneity in an infarcted human heart.

    abstract::In myocardial infarction, muscle tissue of the heart is damaged as a result of ceased or severely impaired blood flow. Survivors have an increased risk of further complications, possibly leading to heart failure. Material properties play an important role in determining post-infarction outcome. Due to spatial variatio...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1028-5

    authors: Balaban G,Finsberg H,Funke S,Håland TF,Hopp E,Sundnes J,Wall S,Rognes ME

    更新日期:2018-10-01 00:00:00

  • Matrix homeostasis within the immature annulus fibrosus depends on the frequency of dynamic compression: a study based on the self-developed mechanically active bioreactor.

    abstract::Evidence suggests that mechanical load is related to structural destruction of disk annulus fibrosus (AF) either in adult disk degeneration or in child disk acute injury. Both biochemical and biomechanical properties are different between immature and mature disks. However, the effects of mechanical compression on imm...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0823-0

    authors: Li P,Gan Y,Xu Y,Song L,Wang H,Zhang C,Wang L,Zhao C,Luo L,Zhou Q

    更新日期:2017-04-01 00:00:00

  • Mechanomics analysis of hESCs under combined mechanical shear, stretch, and compression.

    abstract::Human embryonic stem cells (hESCs) can differentiate to three germ layers within biochemical and biomechanical niches. The complicated mechanical environments in vivo could have diverse effects on the fate decision and biological functions of hESCs. To globally screen mechanosensitive molecules, three typical types of...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01378-5

    authors: Zhang F,Wang J,Lü D,Zheng L,Shangguan B,Gao Y,Wu Y,Long M

    更新日期:2020-08-18 00:00:00

  • Finite-element analysis of geometrical factors in micro-indentation of pollen tubes.

    abstract::Micro-indentation is a new experimental approach to assess physical cellular properties. Here we attempt to quantify the contribution of geometrical parameters to a cylindrical plant cell's resistance to lateral deformation. This information is important to correctly interpret data obtained from experiments using the ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-005-0010-1

    authors: Bolduc JE,Lewis LJ,Aubin CE,Geitmann A

    更新日期:2006-11-01 00:00:00

  • Models of cytoskeletal mechanics of adherent cells.

    abstract::Adherent cells sense their mechanical environment, which, in turn, regulates their functions. During the past decade, a growing body of evidence has indicated that a deformable, solid-state intracellular structure known as the cytoskeleton (CSK) plays a major role in transmitting and distributing mechanical stresses w...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章,评审

    doi:10.1007/s10237-002-0009-9

    authors: Stamenović D,Ingber DE

    更新日期:2002-06-01 00:00:00

  • Residual time of sinusoidal metachronal ciliary flow of non-Newtonian fluid through ciliated walls: fertilization and implantation.

    abstract::The monitoring of the ciliated walls in the uterine tube has supreme importance in enhancing the sperm to reach the egg (capacitation processes), and at peristaltic ciliary flow has a more favorable residual time along the canal when compared to the peristaltic flow. Based on the importance of this study, a mathematic...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01405-5

    authors: Zaher AZ,Moawad AMA,Mekheimer KS,Bhatti MM

    更新日期:2021-01-03 00:00:00

  • Arterial pulse attenuation prediction using the decaying rate of a pressure wave in a viscoelastic material model.

    abstract::The present study examines the possibility of attenuating blood pulses by means of introducing prosthetic viscoelastic materials able to absorb energy and damp such pulses. Vascular prostheses made of polymeric materials modify the mechanical properties of blood vessels. The effect of these materials on the blood puls...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0980-9

    authors: Menacho J,Rotllant L,Molins JJ,Reyes G,García-Granada AA,Balcells M,Martorell J

    更新日期:2018-04-01 00:00:00

  • Creep and stress relaxation of human red cell membrane.

    abstract::In contrast to most mechanical properties of the red cell, experimental information on stress relaxation (SR) of the membrane skeleton is scarce. On the other hand, many postulates or assumptions as to the value of the characteristic time of SR [Formula: see text] can be found in the literature. Here, an experiment is...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0813-2

    authors: Fischer TM

    更新日期:2017-02-01 00:00:00

  • Simulation of cell-substrate traction force dynamics in response to soluble factors.

    abstract::Finite element (FE) simulations of contractile responses of vascular muscular thin films (vMTFs) and endothelial cells resting on an array of microposts under stimulation of soluble factors were conducted in comparison with experimental measurements reported in the literature. Two types of constitutive models were emp...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0886-6

    authors: Liu T

    更新日期:2017-08-01 00:00:00

  • Assessment of boundary conditions for CFD simulation in human carotid artery.

    abstract::Computational fluid dynamics (CFD) is an increasingly used method for investigation of hemodynamic parameters and their alterations under pathological conditions, which are important indicators for diagnosis of cardiovascular disease. In hemodynamic simulation models, the employment of appropriate boundary conditions ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1045-4

    authors: Xu P,Liu X,Zhang H,Ghista D,Zhang D,Shi C,Huang W

    更新日期:2018-12-01 00:00:00

  • Multi-factor decision-making strategy for better coronary plaque burden increase prediction: a patient-specific 3D FSI study using IVUS follow-up data.

    abstract::Plaque progression and vulnerability are influenced by many risk factors. Our goal is to find a simple method to combine multiple risk factors for better plaque development prediction. Intravascular ultrasound data at baseline and follow-up were acquired from nine patients, and fluid-structure interaction models were ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01143-3

    authors: Wang L,Tang D,Maehara A,Molony D,Zheng J,Samady H,Wu Z,Lu W,Zhu J,Ma G,Giddens DP,Stone GW,Mintz GS

    更新日期:2019-10-01 00:00:00

  • A simulation study on the significant nanomechanical heterogeneous properties of collagen.

    abstract::Nanomechanics of individual collagen fibrils govern the mechanical behavior of the majority of connective tissues, yet the current models lack significant details. Majority of the current models assume a rod-shape molecule with homogenous mechanical properties. Recent X-ray crystallography revealed significantly diffe...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0615-3

    authors: Zhou Z,Minary-Jolandan M,Qian D

    更新日期:2015-06-01 00:00:00