Effects of left ventricle wall thickness uncertainties on cardiac mechanics.

Abstract:

:Computational models of the heart have reached a level of maturity that enables sophisticated patient-specific simulations and hold potential for important applications in diagnosis and therapy planning. However, such clinical use puts strict demands on the reliability and accuracy of the models and requires the sensitivity of the model predictions due to errors and uncertainty in the model inputs to be quantified. The models typically contain a large number of parameters, which are difficult to measure and therefore associated with considerable uncertainty. Additionally, patient-specific geometries are usually constructed by semi-manual processing of medical images and must be assumed to be a potential source of model uncertainty. In this paper, we assess the model accuracy by considering the impact of geometrical uncertainties, which typically occur in image-based computational geometries. An approach based on 17 AHA segments diagram is used to consider uncertainties in wall thickness and also in the material properties and fiber orientation, and we perform a comprehensive uncertainty quantification and sensitivity analysis based on polynomial chaos expansions. The quantities considered include stress, strain and global deformation parameters of the left ventricle. The results indicate that important quantities of interest may be more affected by wall thickness, and highlight the need for accurate geometry reconstructions in patient-specific cardiac mechanics models.

authors

Campos JO,Sundnes J,Dos Santos RW,Rocha BM

doi

10.1007/s10237-019-01153-1

subject

Has Abstract

pub_date

2019-10-01 00:00:00

pages

1415-1427

issue

5

eissn

1617-7959

issn

1617-7940

pii

10.1007/s10237-019-01153-1

journal_volume

18

pub_type

杂志文章
  • Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree.

    abstract::Inflammation, a precursor to many diseases including cancer and atherosclerosis, induces differential surface expression of specific vascular molecules. Blood-borne nanoparticles (NPs), loaded with therapeutic and imaging agents, can recognize and use these molecules as vascular docking sites. Here, a computational mo...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0520-1

    authors: Hossain SS,Hughes TJ,Decuzzi P

    更新日期:2014-06-01 00:00:00

  • Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique.

    abstract::The present study aims at investigating biomechanical failure behaviour of human aneurismal aortic tissues so as to diagnose the rupture risk of aneurysms more accurately. An inflation test is performed on aneurismal aortic tissues up to failure and full-field measurements are achieved using stereo digital image corre...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0356-5

    authors: Kim JH,Avril S,Duprey A,Favre JP

    更新日期:2012-07-01 00:00:00

  • A novel method for non-invasively detecting the severity and location of aortic aneurysms.

    abstract::The influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0884-8

    authors: Sazonov I,Khir AW,Hacham WS,Boileau E,Carson JM,van Loon R,Ferguson C,Nithiarasu P

    更新日期:2017-08-01 00:00:00

  • Residual time of sinusoidal metachronal ciliary flow of non-Newtonian fluid through ciliated walls: fertilization and implantation.

    abstract::The monitoring of the ciliated walls in the uterine tube has supreme importance in enhancing the sperm to reach the egg (capacitation processes), and at peristaltic ciliary flow has a more favorable residual time along the canal when compared to the peristaltic flow. Based on the importance of this study, a mathematic...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01405-5

    authors: Zaher AZ,Moawad AMA,Mekheimer KS,Bhatti MM

    更新日期:2021-01-03 00:00:00

  • Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet.

    abstract::Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. The exact causes and mechanisms of AV calcification are unclear, although previous studies suggest that mechanical forces play a role. It has been clinically demonstrated that calcification preferentially occu...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0306-2

    authors: Yap CH,Saikrishnan N,Yoganathan AP

    更新日期:2012-01-01 00:00:00

  • Peristaltic biofluids flow through vertical porous human vessels using third-grade non-Newtonian fluids model.

    abstract::In this paper, the heat and flow characteristic of third-grade non-Newtonian biofluids flow through a vertical porous human vessel due to peristaltic wall motion are studied. The third-grade model can describe shear thinning (or shear thickening) and normal stress differences, which is acceptable for biofluids modelin...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0945-z

    authors: Akbarzadeh P

    更新日期:2018-02-01 00:00:00

  • Moderately degenerated lumbar motion segments: Are they truly unstable?

    abstract::The two main load bearing tissues of the intervertebral disc are the nucleus pulposus and the annulus fibrosus. Both tissues are composed of the same basic components, but differ in their organization and relative amounts. With degeneration, the clear distinction between the two tissues disappears. The changes in bioc...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0835-9

    authors: van Rijsbergen MM,Barthelemy VM,Vrancken AC,Crijns SP,Wilke HJ,Wilson W,van Rietbergen B,Ito K

    更新日期:2017-04-01 00:00:00

  • A two-muscle, continuum-mechanical forward simulation of the upper limb.

    abstract::By following the common definition of forward-dynamics simulations, i.e. predicting movement based on (neural) muscle activity, this work describes, for the first time, a forward-dynamics simulation framework of a musculoskeletal system, in which all components are represented as continuous, three-dimensional, volumet...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0850-x

    authors: Röhrle O,Sprenger M,Schmitt S

    更新日期:2017-06-01 00:00:00

  • The effect of collagen degradation on chondrocyte volume and morphology in bovine articular cartilage following a hypotonic challenge.

    abstract::Collagen degradation is one of the early signs of osteoarthritis. It is not known how collagen degradation affects chondrocyte volume and morphology. Thus, the aim of this study was to investigate the effect of enzymatically induced collagen degradation on cell volume and shape changes in articular cartilage after a h...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0409-4

    authors: Turunen SM,Lammi MJ,Saarakkala S,Han SK,Herzog W,Tanska P,Korhonen RK

    更新日期:2013-06-01 00:00:00

  • Modelling secondary lymphatic valves with a flexible vessel wall: how geometry and material properties combine to provide function.

    abstract::A three-dimensional finite-element fluid/structure interaction model of an intravascular lymphatic valve was constructed, and its properties were investigated under both favourable and adverse pressure differences, simulating valve opening and valve closure, respectively. The shear modulus of the neo-Hookean material ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01325-4

    authors: Bertram CD

    更新日期:2020-12-01 00:00:00

  • Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis.

    abstract::The superficial femoral artery (SFA) is a typical atherosclerosis-prone site. We aimed to explore whether the tortuosity of the SFA associates with the occurrence of atherosclerosis and investigate how vascular tortuosity influences the characteristics of blood flow. Ten patients diagnosed with atherosclerotic disease...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01118-4

    authors: Li X,Liu X,Li X,Xu L,Chen X,Liang F

    更新日期:2019-08-01 00:00:00

  • In vivo estimation of elastic heterogeneity in an infarcted human heart.

    abstract::In myocardial infarction, muscle tissue of the heart is damaged as a result of ceased or severely impaired blood flow. Survivors have an increased risk of further complications, possibly leading to heart failure. Material properties play an important role in determining post-infarction outcome. Due to spatial variatio...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1028-5

    authors: Balaban G,Finsberg H,Funke S,Håland TF,Hopp E,Sundnes J,Wall S,Rognes ME

    更新日期:2018-10-01 00:00:00

  • Arterial pulse attenuation prediction using the decaying rate of a pressure wave in a viscoelastic material model.

    abstract::The present study examines the possibility of attenuating blood pulses by means of introducing prosthetic viscoelastic materials able to absorb energy and damp such pulses. Vascular prostheses made of polymeric materials modify the mechanical properties of blood vessels. The effect of these materials on the blood puls...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0980-9

    authors: Menacho J,Rotllant L,Molins JJ,Reyes G,García-Granada AA,Balcells M,Martorell J

    更新日期:2018-04-01 00:00:00

  • Mechanochemical coupling of formin-induced actin interaction at the level of single molecular complex.

    abstract::Formins promote actin assembly and are involved in force-dependent cytoskeletal remodeling. However, how force alters the formin functions still needs to be investigated. Here, using atomic force microscopy and biomembrane force probe, we investigated how mechanical force affects formin-mediated actin interactions at ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01284-5

    authors: Li Z,Lee H,Eskin SG,Ono S,Zhu C,McIntire LV

    更新日期:2020-10-01 00:00:00

  • Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms.

    abstract::In this manuscript, we present a combined experimental and computational technique that can identify the heterogeneous elastic properties of planar soft tissues. By combining inverse membrane analysis, digital image correlation, and bulge inflation tests, we are able to identify a tissue's mechanical properties locall...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0646-9

    authors: Davis FM,Luo Y,Avril S,Duprey A,Lu J

    更新日期:2015-10-01 00:00:00

  • Inferring spatial variations of microstructural properties from macroscopic mechanical response.

    abstract::Disease alters tissue microstructure, which in turn affects the macroscopic mechanical properties of tissue. In elasticity imaging, the macroscopic response is measured and is used to infer the spatial distribution of the elastic constitutive parameters. When an empirical constitutive model is used, these parameters c...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0831-0

    authors: Liu T,Hall TJ,Barbone PE,Oberai AA

    更新日期:2017-04-01 00:00:00

  • Multiphoton microscopy observations of 3D elastin and collagen fiber microstructure changes during pressurization in aortic media.

    abstract::Elastin and collagen fibers play important roles in the mechanical properties of aortic media. Because knowledge of local fiber structures is required for detailed analysis of blood vessel wall mechanics, we investigated 3D microstructures of elastin and collagen fibers in thoracic aortas and monitored changes during ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0851-9

    authors: Sugita S,Matsumoto T

    更新日期:2017-06-01 00:00:00

  • Assessment of boundary conditions for CFD simulation in human carotid artery.

    abstract::Computational fluid dynamics (CFD) is an increasingly used method for investigation of hemodynamic parameters and their alterations under pathological conditions, which are important indicators for diagnosis of cardiovascular disease. In hemodynamic simulation models, the employment of appropriate boundary conditions ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1045-4

    authors: Xu P,Liu X,Zhang H,Ghista D,Zhang D,Shi C,Huang W

    更新日期:2018-12-01 00:00:00

  • Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage.

    abstract::Cartilage matrix mechanical function is largely determined by interactions between the collagen fibrillar network and the proteoglycan gel. Although the molecular physics of these matrix constituents have been characterized and modern imaging methods are capable of localized measurement of molecular densities and orie...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0036-z

    authors: Quinn TM,Morel V

    更新日期:2007-01-01 00:00:00

  • A new model to simulate the elastic properties of mineralized collagen fibril.

    abstract::Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric di...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0223-9

    authors: Yuan F,Stock SR,Haeffner DR,Almer JD,Dunand DC,Brinson LC

    更新日期:2011-04-01 00:00:00

  • Introducing the pro-coagulant contact system in the numerical assessment of device-related thrombosis.

    abstract::Thrombosis is a major concern in blood-coated medical devices. Contact activation, which is the initial part of the coagulation cascade in device-related thrombosis, is not considered in current thrombus formation models. In the present study, pro-coagulant reactions including the contact activation system are coupled...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0994-3

    authors: Méndez Rojano R,Mendez S,Nicoud F

    更新日期:2018-06-01 00:00:00

  • The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.

    abstract::The integrity of articular cartilage depends on the proper functioning and mechanical stimulation of chondrocytes, the cells that synthesize extracellular matrix and maintain tissue health. The biosynthetic activity of chondrocytes is influenced by genetic factors, environmental influences, extracellular matrix compos...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0016-3

    authors: Han SK,Federico S,Grillo A,Giaquinta G,Herzog W

    更新日期:2007-04-01 00:00:00

  • A microfluidic device with spatiotemporal wall shear stress and ATP signals to investigate the intracellular calcium dynamics in vascular endothelial cells.

    abstract::Intracellular calcium dynamics plays an important role in the regulation of vascular endothelial cellular functions. In order to probe the intracellular calcium dynamic response under synergistic effect of wall shear stress (WSS) and adenosine triphosphate (ATP) signals, a novel microfluidic device, which provides the...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1076-x

    authors: Chen ZZ,Yuan WM,Xiang C,Zeng DP,Liu B,Qin KR

    更新日期:2019-02-01 00:00:00

  • Mechanomics analysis of hESCs under combined mechanical shear, stretch, and compression.

    abstract::Human embryonic stem cells (hESCs) can differentiate to three germ layers within biochemical and biomechanical niches. The complicated mechanical environments in vivo could have diverse effects on the fate decision and biological functions of hESCs. To globally screen mechanosensitive molecules, three typical types of...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01378-5

    authors: Zhang F,Wang J,Lü D,Zheng L,Shangguan B,Gao Y,Wu Y,Long M

    更新日期:2020-08-18 00:00:00

  • A network-based response feature matrix as a brain injury metric.

    abstract::Conventional brain injury metrics are scalars that treat the whole head/brain as a single unit but do not characterize the distribution of brain responses. Here, we establish a network-based "response feature matrix" to characterize the magnitude and distribution of impact-induced brain strains. The network nodes and ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01261-y

    authors: Wu S,Zhao W,Rowson B,Rowson S,Ji S

    更新日期:2020-06-01 00:00:00

  • Material model of pelvic bone based on modal analysis: a study on the composite bone.

    abstract::Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's mo...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0822-1

    authors: Henyš P,Čapek L

    更新日期:2017-02-01 00:00:00

  • Computational neurotrauma--design, simulation, and analysis of controlled cortical impact model.

    abstract::The controlled cortical impact (CCI) model is widely used in many laboratories to study traumatic brain injury (TBI). Although external impact parameters during CCI tests could be clearly defined, little is known about the internal tissue-level mechanical responses of the rat brain. Furthermore, the external impact pa...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0212-z

    authors: Mao H,Yang KH,King AI,Yang K

    更新日期:2010-12-01 00:00:00

  • Simulated tissue growth for 3D printed scaffolds.

    abstract::Experiments have demonstrated biological tissues grow by mechanically sensing their localized curvature, therefore making geometry a key consideration for tissue scaffold design. We developed a simulation approach for modeling tissue growth on beam-based geometries of repeating unit cells, with four lattice topologies...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1040-9

    authors: Egan PF,Shea KA,Ferguson SJ

    更新日期:2018-10-01 00:00:00

  • Creep and stress relaxation of human red cell membrane.

    abstract::In contrast to most mechanical properties of the red cell, experimental information on stress relaxation (SR) of the membrane skeleton is scarce. On the other hand, many postulates or assumptions as to the value of the characteristic time of SR [Formula: see text] can be found in the literature. Here, an experiment is...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0813-2

    authors: Fischer TM

    更新日期:2017-02-01 00:00:00

  • Mean arterial pressure nonlinearity in an elastic circulatory system subjected to different hematocrits.

    abstract::The level of hematocrit (Hct) is known to affect mean arterial pressure (MAP) by influencing blood viscosity. In the healthy population, an increase in Hct (and corresponding increase in viscosity) tends to raise MAP. However, data from a clinical study of type 2 diabetic patients indicate that this relationship is no...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0258-y

    authors: Branigan T,Bolster D,Vázquez BY,Intaglietta M,Tartakovsky DM

    更新日期:2011-07-01 00:00:00