A microfluidic device with spatiotemporal wall shear stress and ATP signals to investigate the intracellular calcium dynamics in vascular endothelial cells.

Abstract:

:Intracellular calcium dynamics plays an important role in the regulation of vascular endothelial cellular functions. In order to probe the intracellular calcium dynamic response under synergistic effect of wall shear stress (WSS) and adenosine triphosphate (ATP) signals, a novel microfluidic device, which provides the adherent vascular endothelial cells (VECs) on the bottom of microchannel with WSS signal alone, ATP signal alone, and different combinations of WSS and ATP signals, is proposed based upon the principles of fluid mechanics and mass transfer. The spatiotemporal profiles of extracellular ATP signals from numerical simulation and experiment studies validate the implementation of our design. The intracellular calcium dynamics of VECs in response to either WSS signal or ATP signal alone, and different combinations of WSS and ATP signals have been investigated. It is found that the synergistic effect of the WSS and ATP signals plays a more significant role in the signal transduction of VECs rather than that from either WSS signal or ATP signal alone. In particular, under the combined stimuli of WSS and ATP signals with different amplitudes and frequencies, the amplitudes and frequencies of the intracellular Ca2+ dynamic signals are observed to be closely related to the amplitudes and frequencies of WSS or ATP signals.

authors

Chen ZZ,Yuan WM,Xiang C,Zeng DP,Liu B,Qin KR

doi

10.1007/s10237-018-1076-x

subject

Has Abstract

pub_date

2019-02-01 00:00:00

pages

189-202

issue

1

eissn

1617-7959

issn

1617-7940

pii

10.1007/s10237-018-1076-x

journal_volume

18

pub_type

杂志文章
  • In vivo estimation of elastic heterogeneity in an infarcted human heart.

    abstract::In myocardial infarction, muscle tissue of the heart is damaged as a result of ceased or severely impaired blood flow. Survivors have an increased risk of further complications, possibly leading to heart failure. Material properties play an important role in determining post-infarction outcome. Due to spatial variatio...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1028-5

    authors: Balaban G,Finsberg H,Funke S,Håland TF,Hopp E,Sundnes J,Wall S,Rognes ME

    更新日期:2018-10-01 00:00:00

  • On the mechanics of myopia and its influence on retinal detachment.

    abstract::A mechanics-based mathematical model of retinal detachment due to the geometric changes of the eye associated with the evolution of myopia is developed. This includes deformation of the retina due to biological growth of the retina, as well as elastic deformation imposed on the retina by the myopic change in shape of ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01234-1

    authors: Lakawicz JM,Bottega WJ,Fine HF,Prenner JL

    更新日期:2020-04-01 00:00:00

  • Modeling left ventricular dynamics with characteristic deformation modes.

    abstract::A computationally efficient method is described for simulating the dynamics of the left ventricle (LV) in three dimensions. LV motion is represented as a combination of a limited number of deformation modes, chosen to represent observed cardiac motions while conserving volume in the LV wall. The contribution of each m...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01168-8

    authors: Hong BD,Moulton MJ,Secomb TW

    更新日期:2019-12-01 00:00:00

  • Perfluorocarbon induces alveolar epithelial cell response through structural and mechanical remodeling.

    abstract::During total liquid ventilation, lung cells are exposed to perfluorocarbon (PFC) whose chemophysical properties highly differ from standard aqueous cell feeding medium (DMEM). We herein perform a systematic study of structural and mechanical properties of A549 alveolar epithelial cells in order to characterize their r...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1005-z

    authors: André Dias S,Planus E,Angely C,Lotteau L,Tissier R,Filoche M,Louis B,Pelle G,Isabey D

    更新日期:2018-08-01 00:00:00

  • Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.

    abstract::Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0989-0

    authors: Lejeune E,Linder C

    更新日期:2018-06-01 00:00:00

  • Computational analysis of biomechanical contributors to possible endovascular graft failure.

    abstract::This paper evaluates numerically coupled blood flow and wall structure interactions in a representative stented abdominal aortic aneurysm (AAA) model, leading potentially to endovascular graft (EVG) failure. A total of 12 biomechanical contributors to possible EVG migration were considered. The results show that after...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-005-0003-0

    authors: Li Z,Kleinstreuer C,Farber M

    更新日期:2005-12-01 00:00:00

  • An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion.

    abstract::We propose and analyse the properties of a new class of models for the electromechanics of cardiac tissue. The set of governing equations consists of nonlinear elasticity using a viscoelastic and orthotropic exponential constitutive law, for both active stress and active strain formulations of active mechanics, couple...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01237-y

    authors: Propp A,Gizzi A,Levrero-Florencio F,Ruiz-Baier R

    更新日期:2020-04-01 00:00:00

  • Bone cell mechanosensation of fluid flow stimulation: a fluid-structure interaction model characterising the role integrin attachments and primary cilia.

    abstract::Load-induced fluid flow acts as an important biophysical signal for bone cell mechanotransduction in vivo, where the mechanical environment is thought to be monitored by integrin and primary cilia mechanoreceptors on the cell body. However, precisely how integrin- and primary cilia-based mechanosensors interact with t...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0631-3

    authors: Vaughan TJ,Mullen CA,Verbruggen SW,McNamara LM

    更新日期:2015-08-01 00:00:00

  • Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet.

    abstract::Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. The exact causes and mechanisms of AV calcification are unclear, although previous studies suggest that mechanical forces play a role. It has been clinically demonstrated that calcification preferentially occu...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0306-2

    authors: Yap CH,Saikrishnan N,Yoganathan AP

    更新日期:2012-01-01 00:00:00

  • Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model.

    abstract::Ischemic stroke is a major cause of death and long-term disabilities worldwide. In this paper, we aim to represent a comprehensive simulation of the motion of emboli through cerebrovascular network within patient-specific computational model. The model consists of major arteries of the circle of Willis reconstructed f...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0762-9

    authors: Khodaee F,Vahidi B,Fatouraee N

    更新日期:2016-10-01 00:00:00

  • A comparison of healthy human and swine articular cartilage dynamic indentation mechanics.

    abstract::Articular cartilage is a multicomponent, poroviscoelastic tissue with nonlinear mechanical properties vital to its function. A consequent goal of repair or replacement of injured cartilage is to achieve mechanical properties in the repair tissue similar to healthy native cartilage. Since fresh healthy human articular ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0338-7

    authors: Ronken S,Arnold MP,Ardura García H,Jeger A,Daniels AU,Wirz D

    更新日期:2012-05-01 00:00:00

  • A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress.

    abstract::A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章,评审

    doi:10.1007/s10237-015-0743-4

    authors: Wang Y,Wang W,Li Z,Hao S,Wang B

    更新日期:2016-10-01 00:00:00

  • Strain history and TGF-β1 induce urinary bladder wall smooth muscle remodeling and elastogenesis.

    abstract::Mechanical cues that trigger pathological remodeling in smooth muscle tissues remain largely unknown and are thought to be pivotal triggers for strain-induced remodeling. Thus, an understanding of the effects mechanical stimulation is important to elucidate underlying mechanisms of disease states and in the developmen...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0298-y

    authors: Heise RL,Parekh A,Joyce EM,Chancellor MB,Sacks MS

    更新日期:2012-01-01 00:00:00

  • Inferring spatial variations of microstructural properties from macroscopic mechanical response.

    abstract::Disease alters tissue microstructure, which in turn affects the macroscopic mechanical properties of tissue. In elasticity imaging, the macroscopic response is measured and is used to infer the spatial distribution of the elastic constitutive parameters. When an empirical constitutive model is used, these parameters c...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0831-0

    authors: Liu T,Hall TJ,Barbone PE,Oberai AA

    更新日期:2017-04-01 00:00:00

  • Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    abstract::We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0658-0

    authors: Jiang Y,Li G,Qian LX,Liang S,Destrade M,Cao Y

    更新日期:2015-10-01 00:00:00

  • A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro.

    abstract::During angiogenesis, sprouting microvessels interact with the extracellular matrix (ECM) by degrading and reorganizing the matrix, applying traction forces, and producing deformation. Morphometric features of the resulting microvascular network are affected by the interaction between the matrix and angiogenic microves...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0635-z

    authors: Edgar LT,Maas SA,Guilkey JE,Weiss JA

    更新日期:2015-08-01 00:00:00

  • A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models.

    abstract::In this paper we introduce a novel method for prescribing terminal boundary conditions in one-dimensional arterial flow networks. This is carried out by coupling the terminal arterial vessel with a poro-elastic tube, representing the flow resistance offered by microcirculation. The performance of the proposed porous m...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01122-8

    authors: Coccarelli A,Prakash A,Nithiarasu P

    更新日期:2019-08-01 00:00:00

  • The potential for intercellular mechanical interaction: simulations of single chondrocyte versus anatomically based distribution.

    abstract::Computational studies of chondrocyte mechanics, and cell mechanics in general, have typically been performed using single cell models embedded in an extracellular matrix construct. The assumption of a single cell microstructural model may not capture intercellular interactions or accurately reflect the macroscale mech...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0951-1

    authors: Halloran JP,Sibole SC,Erdemir A

    更新日期:2018-02-01 00:00:00

  • Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models.

    abstract::Mineralized collagen fibrils have been usually analyzed like a two-phase composite material where crystals are considered as platelets that constitute the reinforcement phase. Different models have been used to describe the elastic behavior of the material. In this work, it is shown that when Halpin-Tsai equations are...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0507-y

    authors: Vercher A,Giner E,Arango C,Tarancón JE,Fuenmayor FJ

    更新日期:2014-04-01 00:00:00

  • Remineralization of mechanical loaded resin-dentin interface: a transitional and synchronized multistep process.

    abstract::This study evaluated the ability of different in vitro mechanical loading tests to promote new mineral formation at bonded dentin interfaces. This research demonstrated a sequential transition in the dentin remineralizing procedure through the analysis of the mineral and matrix gradients. Mechanical loading in phospho...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0573-9

    authors: Toledano M,Aguilera FS,Cabello I,Osorio R

    更新日期:2014-11-01 00:00:00

  • Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods.

    abstract::The key parameters determining the elastic properties of an unidirectional mineralized bone fibril-array decomposed in two further hierarchical levels are investigated using mean field methods. Modeling of the elastic properties of mineralized micro- and nanostructures requires accurate information about the underlyin...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0190-1

    authors: Reisinger AG,Pahr DH,Zysset PK

    更新日期:2010-10-01 00:00:00

  • Relationship between apical membrane elasticity and stress fiber organization in fibroblasts analyzed by fluorescence and atomic force microscopy.

    abstract::To investigate the relationship between cellular microelasticity and the structural features of cytoskeletons (CSKs), a microindentation test for apical cell membranes and observation of the spatio-distribution of actin CSKs of fibroblasts were performed by fluorescence and atomic force microscopy (FM/AFM). The indent...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0048-8

    authors: Kidoaki S,Matsuda T,Yoshikawa K

    更新日期:2006-11-01 00:00:00

  • Comparison of HR-pQCT- and microCT-based finite element models for the estimation of the mechanical properties of the calcaneus trabecular bone.

    abstract::The calcaneus bone is formed of extensive trabecular bone and is therefore well suited to be used as an example of loaded bone to establish the ability of combining microfinite element (microFE) technique with high-resolution peripheral quantitative computed tomography (HR-pQCT) in determining its mechanical propertie...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1051-6

    authors: Alsayednoor J,Metcalf L,Rochester J,Dall'Ara E,McCloskey E,Lacroix D

    更新日期:2018-12-01 00:00:00

  • Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model.

    abstract::In its permanent quest of mechanobiological homeostasis, our vasculature significantly adapts across multiple length and timescales in various physiological and pathological conditions. Computational modeling of vascular growth and remodeling (G&R) has significantly improved our insights into the mechanobiological pro...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01184-8

    authors: Mousavi SJ,Farzaneh S,Avril S

    更新日期:2019-12-01 00:00:00

  • Computational neurotrauma--design, simulation, and analysis of controlled cortical impact model.

    abstract::The controlled cortical impact (CCI) model is widely used in many laboratories to study traumatic brain injury (TBI). Although external impact parameters during CCI tests could be clearly defined, little is known about the internal tissue-level mechanical responses of the rat brain. Furthermore, the external impact pa...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0212-z

    authors: Mao H,Yang KH,King AI,Yang K

    更新日期:2010-12-01 00:00:00

  • The effect of the elongation of the proximal aorta on the estimation of the aortic wall distensibility.

    abstract::The compliance of the proximal aortic wall is a major determinant of cardiac afterload. Aortic compliance is often estimated based on cross-sectional area changes over the pulse pressure, under the assumption of a negligible longitudinal stretch during the pulse. However, the proximal aorta is subjected to significant...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01371-y

    authors: Pagoulatou SZ,Ferraro M,Trachet B,Bikia V,Rovas G,Crowe LA,Vallée JP,Adamopoulos D,Stergiopulos N

    更新日期:2020-07-31 00:00:00

  • Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity.

    abstract::A contact finite element (FE) formulation is introduced, amenable to patient-specific analysis of cumulative cartilage mechano-stimulus attributable to habitual functional activity. CT scans of individual human ankles are segmented to delineate bony margins. Each bone surface is projected outward to create a second su...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0025-2

    authors: Anderson DD,Goldsworthy JK,Shivanna K,Grosland NM,Pedersen DR,Thomas TP,Tochigi Y,Marsh JL,Brown TD

    更新日期:2006-06-01 00:00:00

  • Flow plate separation of cells based on elastic properties: a computational study.

    abstract::Medical studies have consistently shown that the best defense against cancer is early detection. Due to this, many efforts have been made to develop methods of screening patient blood quickly and cheaply. These methods range from separation via differences in size, electrostatic potential, chemical potential, antibody...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1093-9

    authors: Becton M,Averett RD,Wang X

    更新日期:2019-04-01 00:00:00

  • White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities.

    abstract::A systematic correlation between finite element models (FEMs) and histopathology is needed to define deformation thresholds associated with traumatic brain injury (TBI). In this study, a FEM of a transected piglet brain was used to reverse engineer the range of optimal shear moduli for infant (5 days old, 553-658 Pa) ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0643-z

    authors: Sullivan S,Eucker SA,Gabrieli D,Bradfield C,Coats B,Maltese MR,Lee J,Smith C,Margulies SS

    更新日期:2015-08-01 00:00:00

  • Small scale membrane mechanics.

    abstract::Large scale changes to lipid bilayer shapes are well represented by the Helfrich model. However, there are membrane processes that take place at smaller length scales that this model cannot address. In this work, we present a one-dimensional continuum model that captures the mechanics of the lipid bilayer membrane at ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0528-6

    authors: Rangamani P,Benjamini A,Agrawal A,Smit B,Steigmann DJ,Oster G

    更新日期:2014-08-01 00:00:00