In vivo estimation of elastic heterogeneity in an infarcted human heart.

Abstract:

:In myocardial infarction, muscle tissue of the heart is damaged as a result of ceased or severely impaired blood flow. Survivors have an increased risk of further complications, possibly leading to heart failure. Material properties play an important role in determining post-infarction outcome. Due to spatial variation in scarring, material properties can be expected to vary throughout the tissue of a heart after an infarction. In this study we propose a data assimilation technique that can efficiently estimate heterogeneous elastic material properties in a personalized model of cardiac mechanics. The proposed data assimilation is tested on a clinical dataset consisting of regional left ventricular strains and in vivo pressures during atrial systole from a human with a myocardial infarction. Good matches to regional strains are obtained, and simulated equi-biaxial tests are carried out to demonstrate regional heterogeneities in stress-strain relationships. A synthetic data test shows a good match of estimated versus ground truth material parameter fields in the presence of no to low levels of noise. This study is the first to apply adjoint-based data assimilation to the important problem of estimating cardiac elastic heterogeneities in 3-D from medical images.

authors

Balaban G,Finsberg H,Funke S,Håland TF,Hopp E,Sundnes J,Wall S,Rognes ME

doi

10.1007/s10237-018-1028-5

subject

Has Abstract

pub_date

2018-10-01 00:00:00

pages

1317-1329

issue

5

eissn

1617-7959

issn

1617-7940

pii

10.1007/s10237-018-1028-5

journal_volume

17

pub_type

杂志文章
  • White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities.

    abstract::A systematic correlation between finite element models (FEMs) and histopathology is needed to define deformation thresholds associated with traumatic brain injury (TBI). In this study, a FEM of a transected piglet brain was used to reverse engineer the range of optimal shear moduli for infant (5 days old, 553-658 Pa) ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0643-z

    authors: Sullivan S,Eucker SA,Gabrieli D,Bradfield C,Coats B,Maltese MR,Lee J,Smith C,Margulies SS

    更新日期:2015-08-01 00:00:00

  • Assessment of boundary conditions for CFD simulation in human carotid artery.

    abstract::Computational fluid dynamics (CFD) is an increasingly used method for investigation of hemodynamic parameters and their alterations under pathological conditions, which are important indicators for diagnosis of cardiovascular disease. In hemodynamic simulation models, the employment of appropriate boundary conditions ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1045-4

    authors: Xu P,Liu X,Zhang H,Ghista D,Zhang D,Shi C,Huang W

    更新日期:2018-12-01 00:00:00

  • A network-based response feature matrix as a brain injury metric.

    abstract::Conventional brain injury metrics are scalars that treat the whole head/brain as a single unit but do not characterize the distribution of brain responses. Here, we establish a network-based "response feature matrix" to characterize the magnitude and distribution of impact-induced brain strains. The network nodes and ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01261-y

    authors: Wu S,Zhao W,Rowson B,Rowson S,Ji S

    更新日期:2020-06-01 00:00:00

  • Modelling secondary lymphatic valves with a flexible vessel wall: how geometry and material properties combine to provide function.

    abstract::A three-dimensional finite-element fluid/structure interaction model of an intravascular lymphatic valve was constructed, and its properties were investigated under both favourable and adverse pressure differences, simulating valve opening and valve closure, respectively. The shear modulus of the neo-Hookean material ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01325-4

    authors: Bertram CD

    更新日期:2020-12-01 00:00:00

  • Prediction of cell growth rate over scaffold strands inside a perfusion bioreactor.

    abstract::Mathematical and computational modeling of the dynamic process where tissue scaffolds are cultured in perfusion bioreactors is able to provide insight into the cell and tissue growth which can facilitate the design of tissue scaffolds and selection of optimal operating conditions. To date, a resolved-scale simulation ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0606-4

    authors: Hossain MS,Bergstrom DJ,Chen XB

    更新日期:2015-04-01 00:00:00

  • A computational model that predicts reverse growth in response to mechanical unloading.

    abstract::Ventricular growth is widely considered to be an important feature in the adverse progression of heart diseases, whereas reverse ventricular growth (or reverse remodeling) is often considered to be a favorable response to clinical intervention. In recent years, a number of theoretical models have been proposed to mode...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0598-0

    authors: Lee LC,Genet M,Acevedo-Bolton G,Ordovas K,Guccione JM,Kuhl E

    更新日期:2015-04-01 00:00:00

  • Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage.

    abstract::The collagen fibril network is an important factor for the depth-dependent mechanical behaviour of adult articular cartilage (AC). Recent studies show that collagen orientation is parallel to the articular surface throughout the tissue depth in perinatal animals, and that the collagen orientations transform to a depth...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0233-7

    authors: van Turnhout MC,Kranenbarg S,van Leeuwen JL

    更新日期:2011-04-01 00:00:00

  • A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth.

    abstract::Growth and remodeling in the heart is driven by a combination of mechanical and hormonal signals that produce different patterns of growth in response to exercise, pregnancy, and various pathologies. In particular, increases in afterload lead to concentric hypertrophy, a thickening of the walls that increases the cont...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01385-6

    authors: Estrada AC,Yoshida K,Saucerman JJ,Holmes JW

    更新日期:2020-09-24 00:00:00

  • Matrix homeostasis within the immature annulus fibrosus depends on the frequency of dynamic compression: a study based on the self-developed mechanically active bioreactor.

    abstract::Evidence suggests that mechanical load is related to structural destruction of disk annulus fibrosus (AF) either in adult disk degeneration or in child disk acute injury. Both biochemical and biomechanical properties are different between immature and mature disks. However, the effects of mechanical compression on imm...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0823-0

    authors: Li P,Gan Y,Xu Y,Song L,Wang H,Zhang C,Wang L,Zhao C,Luo L,Zhou Q

    更新日期:2017-04-01 00:00:00

  • Remineralization of mechanical loaded resin-dentin interface: a transitional and synchronized multistep process.

    abstract::This study evaluated the ability of different in vitro mechanical loading tests to promote new mineral formation at bonded dentin interfaces. This research demonstrated a sequential transition in the dentin remineralizing procedure through the analysis of the mineral and matrix gradients. Mechanical loading in phospho...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0573-9

    authors: Toledano M,Aguilera FS,Cabello I,Osorio R

    更新日期:2014-11-01 00:00:00

  • Statistical shape modelling of the first carpometacarpal joint reveals high variation in morphology.

    abstract::The first carpometacarpal (CMC) joint, located at the base of the thumb and formed by the junction between the first metacarpal and trapezium, is a common site for osteoarthritis of the hand. The shape of both the first metacarpal and trapezium contributes to the intrinsic bony stability of the joint, and variability ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01257-8

    authors: Rusli WMR,Kedgley AE

    更新日期:2020-08-01 00:00:00

  • Moderately degenerated lumbar motion segments: Are they truly unstable?

    abstract::The two main load bearing tissues of the intervertebral disc are the nucleus pulposus and the annulus fibrosus. Both tissues are composed of the same basic components, but differ in their organization and relative amounts. With degeneration, the clear distinction between the two tissues disappears. The changes in bioc...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0835-9

    authors: van Rijsbergen MM,Barthelemy VM,Vrancken AC,Crijns SP,Wilke HJ,Wilson W,van Rietbergen B,Ito K

    更新日期:2017-04-01 00:00:00

  • Kinematics, material symmetry, and energy densities for lipid bilayers with spontaneous curvature.

    abstract::Continuum mechanical tools are used to describe the deformation, energy density, and material symmetry of a lipid bilayer with spontaneous curvature. In contrast to conventional approaches in which lipid bilayers are modeled by material surfaces, here we rely on a three-dimensional approach in which a lipid bilayer is...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0459-7

    authors: Maleki M,Seguin B,Fried E

    更新日期:2013-10-01 00:00:00

  • Multi-factor decision-making strategy for better coronary plaque burden increase prediction: a patient-specific 3D FSI study using IVUS follow-up data.

    abstract::Plaque progression and vulnerability are influenced by many risk factors. Our goal is to find a simple method to combine multiple risk factors for better plaque development prediction. Intravascular ultrasound data at baseline and follow-up were acquired from nine patients, and fluid-structure interaction models were ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01143-3

    authors: Wang L,Tang D,Maehara A,Molony D,Zheng J,Samady H,Wu Z,Lu W,Zhu J,Ma G,Giddens DP,Stone GW,Mintz GS

    更新日期:2019-10-01 00:00:00

  • Peristaltic biofluids flow through vertical porous human vessels using third-grade non-Newtonian fluids model.

    abstract::In this paper, the heat and flow characteristic of third-grade non-Newtonian biofluids flow through a vertical porous human vessel due to peristaltic wall motion are studied. The third-grade model can describe shear thinning (or shear thickening) and normal stress differences, which is acceptable for biofluids modelin...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0945-z

    authors: Akbarzadeh P

    更新日期:2018-02-01 00:00:00

  • An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion.

    abstract::We propose and analyse the properties of a new class of models for the electromechanics of cardiac tissue. The set of governing equations consists of nonlinear elasticity using a viscoelastic and orthotropic exponential constitutive law, for both active stress and active strain formulations of active mechanics, couple...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01237-y

    authors: Propp A,Gizzi A,Levrero-Florencio F,Ruiz-Baier R

    更新日期:2020-04-01 00:00:00

  • Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.

    abstract::Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0989-0

    authors: Lejeune E,Linder C

    更新日期:2018-06-01 00:00:00

  • Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation.

    abstract::Cell deformability and mechanical responses of living cells depend closely on the dynamic changes in the structural architecture of the cytoskeleton (CSK). To describe the dynamic reorganization and the heterogeneity of the prestressed multi-modular CSK, we developed a two-dimensional model for the CSK which was taken...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0057-7

    authors: Milan JL,Wendling-Mansuy S,Jean M,Chabrand P

    更新日期:2007-11-01 00:00:00

  • Introducing the pro-coagulant contact system in the numerical assessment of device-related thrombosis.

    abstract::Thrombosis is a major concern in blood-coated medical devices. Contact activation, which is the initial part of the coagulation cascade in device-related thrombosis, is not considered in current thrombus formation models. In the present study, pro-coagulant reactions including the contact activation system are coupled...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0994-3

    authors: Méndez Rojano R,Mendez S,Nicoud F

    更新日期:2018-06-01 00:00:00

  • Deformation of human red blood cells in extensional flow through a hyperbolic contraction.

    abstract::Flow-induced damage to red blood cells has been an issue of considerable importance since the introduction of the first cardiovascular devices. Early blood damage prediction models were based on measurements of damage by shear stress only. Subsequently, these models were extrapolated to include other components of the...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01208-3

    authors: Faghih MM,Sharp MK

    更新日期:2020-02-01 00:00:00

  • A new model to simulate the elastic properties of mineralized collagen fibril.

    abstract::Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric di...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0223-9

    authors: Yuan F,Stock SR,Haeffner DR,Almer JD,Dunand DC,Brinson LC

    更新日期:2011-04-01 00:00:00

  • Effects of pH on transport properties of articular cartilages.

    abstract::Articular cartilages swell and shrink depending on the ionic strength of the electrolyte they are in contact with. This electro-chemo-mechanical coupling is due to the presence of fixed electrical charges on proteoglycans (PGs). In addition, at nonphysiological pH, collagen fibers become charged. Therefore, variation ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-009-0158-1

    authors: Loret B,Simões FM

    更新日期:2010-02-01 00:00:00

  • Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity.

    abstract::A contact finite element (FE) formulation is introduced, amenable to patient-specific analysis of cumulative cartilage mechano-stimulus attributable to habitual functional activity. CT scans of individual human ankles are segmented to delineate bony margins. Each bone surface is projected outward to create a second su...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0025-2

    authors: Anderson DD,Goldsworthy JK,Shivanna K,Grosland NM,Pedersen DR,Thomas TP,Tochigi Y,Marsh JL,Brown TD

    更新日期:2006-06-01 00:00:00

  • Computational neurotrauma--design, simulation, and analysis of controlled cortical impact model.

    abstract::The controlled cortical impact (CCI) model is widely used in many laboratories to study traumatic brain injury (TBI). Although external impact parameters during CCI tests could be clearly defined, little is known about the internal tissue-level mechanical responses of the rat brain. Furthermore, the external impact pa...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0212-z

    authors: Mao H,Yang KH,King AI,Yang K

    更新日期:2010-12-01 00:00:00

  • Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique.

    abstract::The present study aims at investigating biomechanical failure behaviour of human aneurismal aortic tissues so as to diagnose the rupture risk of aneurysms more accurately. An inflation test is performed on aneurismal aortic tissues up to failure and full-field measurements are achieved using stereo digital image corre...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0356-5

    authors: Kim JH,Avril S,Duprey A,Favre JP

    更新日期:2012-07-01 00:00:00

  • Tracking of fluorescence nanoparticles with nanometre resolution in a biological system: assessing local viscosity and microrheology.

    abstract::The aim of the study was to establish a user-friendly approach for single fluorescence particle 3D localization and tracking with nanometre precision in a standard fluorescence microscope using a point spread function (PSF) approach, and to evaluate validity and precision for different analysis methods and optical con...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0499-7

    authors: Marki A,Ermilov E,Zakrzewicz A,Koller A,Secomb TW,Pries AR

    更新日期:2014-04-01 00:00:00

  • Bone cell mechanosensation of fluid flow stimulation: a fluid-structure interaction model characterising the role integrin attachments and primary cilia.

    abstract::Load-induced fluid flow acts as an important biophysical signal for bone cell mechanotransduction in vivo, where the mechanical environment is thought to be monitored by integrin and primary cilia mechanoreceptors on the cell body. However, precisely how integrin- and primary cilia-based mechanosensors interact with t...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0631-3

    authors: Vaughan TJ,Mullen CA,Verbruggen SW,McNamara LM

    更新日期:2015-08-01 00:00:00

  • Perfluorocarbon induces alveolar epithelial cell response through structural and mechanical remodeling.

    abstract::During total liquid ventilation, lung cells are exposed to perfluorocarbon (PFC) whose chemophysical properties highly differ from standard aqueous cell feeding medium (DMEM). We herein perform a systematic study of structural and mechanical properties of A549 alveolar epithelial cells in order to characterize their r...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1005-z

    authors: André Dias S,Planus E,Angely C,Lotteau L,Tissier R,Filoche M,Louis B,Pelle G,Isabey D

    更新日期:2018-08-01 00:00:00

  • Multi-view stereo analysis reveals anisotropy of prestrain, deformation, and growth in living skin.

    abstract::Skin expansion delivers newly grown skin that maintains histological and mechanical features of the original tissue. Although it is the gold standard for cutaneous defect correction today, the underlying mechanisms remain poorly understood. Here we present a novel technique to quantify anisotropic prestrain, deformati...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0650-8

    authors: Buganza Tepole A,Gart M,Purnell CA,Gosain AK,Kuhl E

    更新日期:2015-10-01 00:00:00

  • Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods.

    abstract::The key parameters determining the elastic properties of an unidirectional mineralized bone fibril-array decomposed in two further hierarchical levels are investigated using mean field methods. Modeling of the elastic properties of mineralized micro- and nanostructures requires accurate information about the underlyin...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0190-1

    authors: Reisinger AG,Pahr DH,Zysset PK

    更新日期:2010-10-01 00:00:00