A comparison of healthy human and swine articular cartilage dynamic indentation mechanics.

Abstract:

:Articular cartilage is a multicomponent, poroviscoelastic tissue with nonlinear mechanical properties vital to its function. A consequent goal of repair or replacement of injured cartilage is to achieve mechanical properties in the repair tissue similar to healthy native cartilage. Since fresh healthy human articular cartilage (HC) is not readily available, we tested whether swine cartilage (SC) could serve as a suitable substitute for mechanical comparisons. To a first approximation, cartilage tissue and surgical substitutes can be evaluated mechanically as viscoelastic materials. Stiffness measurements (dynamic modulus, loss angle) are vital to function and are also a non-destructive means of evaluation. Since viscoelastic material stiffness is strongly strain rate dependent, stiffness was tested under different loading conditions related to function. Stiffness of healthy HC and SC specimens was determined and compared using two non-destructive, mm-scale indentation test modes: fast impact and slow sinusoidal deformation. Deformation resistance (dynamic modulus) and energy handling (loss angle) were determined. For equivalent anatomic locations, there was no difference in dynamic modulus. However, the HC loss angle was ~35% lower in fast impact and ~12% higher in slow sinusoidal mode. Differences seem attributable to age (young SC, older HC) but also to species anatomy and biology. Test mode-related differences in human-swine loss angle support use of multiple function-related test modes. Keeping loss angle differences in mind, swine specimens could serve as a standard of comparison for mechanical evaluation of e.g. engineered cartilage or synthetic repair materials.

authors

Ronken S,Arnold MP,Ardura García H,Jeger A,Daniels AU,Wirz D

doi

10.1007/s10237-011-0338-7

subject

Has Abstract

pub_date

2012-05-01 00:00:00

pages

631-9

issue

5

eissn

1617-7959

issn

1617-7940

journal_volume

11

pub_type

杂志文章
  • Multi-factor decision-making strategy for better coronary plaque burden increase prediction: a patient-specific 3D FSI study using IVUS follow-up data.

    abstract::Plaque progression and vulnerability are influenced by many risk factors. Our goal is to find a simple method to combine multiple risk factors for better plaque development prediction. Intravascular ultrasound data at baseline and follow-up were acquired from nine patients, and fluid-structure interaction models were ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01143-3

    authors: Wang L,Tang D,Maehara A,Molony D,Zheng J,Samady H,Wu Z,Lu W,Zhu J,Ma G,Giddens DP,Stone GW,Mintz GS

    更新日期:2019-10-01 00:00:00

  • Prediction of cell growth rate over scaffold strands inside a perfusion bioreactor.

    abstract::Mathematical and computational modeling of the dynamic process where tissue scaffolds are cultured in perfusion bioreactors is able to provide insight into the cell and tissue growth which can facilitate the design of tissue scaffolds and selection of optimal operating conditions. To date, a resolved-scale simulation ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0606-4

    authors: Hossain MS,Bergstrom DJ,Chen XB

    更新日期:2015-04-01 00:00:00

  • Instrumentation and procedures for estimating the constitutive parameters of inhomogeneous elastic membranes.

    abstract::This study presents a method for estimating the spatial variations in material properties of elastic membranes, such as biological tissue, which contain both inhomogeneous strain fields and inhomogeneous material properties. In order to validate the method, an inhomogeneous, isotropic rubber membrane was biaxially loa...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-002-0019-7

    authors: Nielsen PM,Malcolm DT,Hunter PJ,Charette PG

    更新日期:2002-12-01 00:00:00

  • Modeling cell proliferation for simulating three-dimensional tissue morphogenesis based on a reversible network reconnection framework.

    abstract::Tissue morphogenesis in multicellular organisms is accompanied by proliferative cell behaviors: cell division (increase in cell number after each cell cycle) and cell growth (increase in cell volume during each cell cycle). These proliferative cell behaviors can be regulated by multicellular dynamics to achieve proper...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0458-8

    authors: Okuda S,Inoue Y,Eiraku M,Sasai Y,Adachi T

    更新日期:2013-10-01 00:00:00

  • Simulation of multi-stage nonlinear bone remodeling induced by fixed partial dentures of different configurations: a comparative clinical and numerical study.

    abstract::This paper aimed to develop a clinically validated bone remodeling algorithm by integrating bone's dynamic properties in a multi-stage fashion based on a four-year clinical follow-up of implant treatment. The configurational effects of fixed partial dentures (FPDs) were explored using a multi-stage remodeling rule. Th...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0826-x

    authors: Liao Z,Yoda N,Chen J,Zheng K,Sasaki K,Swain MV,Li Q

    更新日期:2017-04-01 00:00:00

  • Peristaltic biofluids flow through vertical porous human vessels using third-grade non-Newtonian fluids model.

    abstract::In this paper, the heat and flow characteristic of third-grade non-Newtonian biofluids flow through a vertical porous human vessel due to peristaltic wall motion are studied. The third-grade model can describe shear thinning (or shear thickening) and normal stress differences, which is acceptable for biofluids modelin...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0945-z

    authors: Akbarzadeh P

    更新日期:2018-02-01 00:00:00

  • Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation.

    abstract::Cell deformability and mechanical responses of living cells depend closely on the dynamic changes in the structural architecture of the cytoskeleton (CSK). To describe the dynamic reorganization and the heterogeneity of the prestressed multi-modular CSK, we developed a two-dimensional model for the CSK which was taken...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0057-7

    authors: Milan JL,Wendling-Mansuy S,Jean M,Chabrand P

    更新日期:2007-11-01 00:00:00

  • In vivo estimation of elastic heterogeneity in an infarcted human heart.

    abstract::In myocardial infarction, muscle tissue of the heart is damaged as a result of ceased or severely impaired blood flow. Survivors have an increased risk of further complications, possibly leading to heart failure. Material properties play an important role in determining post-infarction outcome. Due to spatial variatio...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1028-5

    authors: Balaban G,Finsberg H,Funke S,Håland TF,Hopp E,Sundnes J,Wall S,Rognes ME

    更新日期:2018-10-01 00:00:00

  • Growing skin: tissue expansion in pediatric forehead reconstruction.

    abstract::Tissue expansion is a common surgical procedure to grow extra skin through controlled mechanical over-stretch. It creates skin that matches the color, texture, and thickness of the surrounding tissue, while minimizing scars and risk of rejection. Despite intense research in tissue expansion and skin growth, there is a...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0357-4

    authors: Zöllner AM,Buganza Tepole A,Gosain AK,Kuhl E

    更新日期:2012-07-01 00:00:00

  • Young's modulus of elasticity of Schlemm's canal endothelial cells.

    abstract::Schlemm's canal (SC) endothelial cells are likely important in the physiology and pathophysiology of the aqueous drainage system of the eye, particularly in glaucoma. The mechanical stiffness of these cells determines, in part, the extent to which they can support a pressure gradient and thus can be used to place limi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-009-0156-3

    authors: Zeng D,Juzkiw T,Read AT,Chan DW,Glucksberg MR,Ethier CR,Johnson M

    更新日期:2010-02-01 00:00:00

  • A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress.

    abstract::A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章,评审

    doi:10.1007/s10237-015-0743-4

    authors: Wang Y,Wang W,Li Z,Hao S,Wang B

    更新日期:2016-10-01 00:00:00

  • What factors determine the number of nonmuscle myosin II in the sarcomeric unit of stress fibers?

    abstract::Actin stress fibers (SFs), a contractile apparatus in nonmuscle cells, possess a contractile unit that is apparently similar to the sarcomere of myofibrils in muscles. The function of SFs has thus often been addressed based on well-characterized properties of muscles. However, unlike the fixed number of myosin molecul...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01375-8

    authors: Saito T,Huang W,Matsui TS,Kuragano M,Takahashi M,Deguchi S

    更新日期:2020-08-10 00:00:00

  • Injury risk prediction from computational simulations of ocular blast loading.

    abstract::A predictive Lagrangian-Eulerian finite element eye model was used to analyze 2.27 and 0.45 kg trinitrotoluene equivalent blasts detonated from 24 different locations. Free air and ground level blasts were simulated directly in front of the eye and at lateral offset locations with box, average, less protective, and mo...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0830-1

    authors: Weaver AA,Stitzel SM,Stitzel JD

    更新日期:2017-04-01 00:00:00

  • A new model to simulate the elastic properties of mineralized collagen fibril.

    abstract::Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric di...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0223-9

    authors: Yuan F,Stock SR,Haeffner DR,Almer JD,Dunand DC,Brinson LC

    更新日期:2011-04-01 00:00:00

  • Simulation of cell-substrate traction force dynamics in response to soluble factors.

    abstract::Finite element (FE) simulations of contractile responses of vascular muscular thin films (vMTFs) and endothelial cells resting on an array of microposts under stimulation of soluble factors were conducted in comparison with experimental measurements reported in the literature. Two types of constitutive models were emp...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0886-6

    authors: Liu T

    更新日期:2017-08-01 00:00:00

  • Efficient materially nonlinear [Formula: see text]FE solver for simulations of trabecular bone failure.

    abstract::An efficient solver for large-scale linear [Formula: see text] simulations was extended for nonlinear material behavior. The material model included damage-based tissue degradation and fracture. The new framework was applied to 20 trabecular biopsies with a mesh resolution of [Formula: see text]. Suitable material par...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01254-x

    authors: Stipsitz M,Zysset PK,Pahr DH

    更新日期:2020-06-01 00:00:00

  • Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models.

    abstract::Mineralized collagen fibrils have been usually analyzed like a two-phase composite material where crystals are considered as platelets that constitute the reinforcement phase. Different models have been used to describe the elastic behavior of the material. In this work, it is shown that when Halpin-Tsai equations are...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0507-y

    authors: Vercher A,Giner E,Arango C,Tarancón JE,Fuenmayor FJ

    更新日期:2014-04-01 00:00:00

  • A growth-based model for the prediction of fiber angle distribution in the intervertebral disc annulus fibrosus.

    abstract::There is a growing interest in the development of patient-specific finite element models of the human lumbar spine for both the assessment of injury risk and the development of treatment strategies. A current challenge in implementing these models is that the outer annulus fibrosus of the disc is composed of concentri...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01150-4

    authors: Michalek AJ

    更新日期:2019-10-01 00:00:00

  • Models of cytoskeletal mechanics of adherent cells.

    abstract::Adherent cells sense their mechanical environment, which, in turn, regulates their functions. During the past decade, a growing body of evidence has indicated that a deformable, solid-state intracellular structure known as the cytoskeleton (CSK) plays a major role in transmitting and distributing mechanical stresses w...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章,评审

    doi:10.1007/s10237-002-0009-9

    authors: Stamenović D,Ingber DE

    更新日期:2002-06-01 00:00:00

  • Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage.

    abstract::Cartilage matrix mechanical function is largely determined by interactions between the collagen fibrillar network and the proteoglycan gel. Although the molecular physics of these matrix constituents have been characterized and modern imaging methods are capable of localized measurement of molecular densities and orie...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0036-z

    authors: Quinn TM,Morel V

    更新日期:2007-01-01 00:00:00

  • Dynamic modeling for shear stress induced ATP release from vascular endothelial cells.

    abstract::A dynamic model is proposed for shear stress induced adenosine triphosphate (ATP) release from endothelial cells (ECs). The dynamic behavior of the ATP/ADP concentration at the endothelial surface by viscous shear flow is investigated through simulation studies based on the dynamic ATP release model. The numerical res...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-007-0088-8

    authors: Qin KR,Xiang C,Xu Z,Cao LL,Ge SS,Jiang ZL

    更新日期:2008-10-01 00:00:00

  • Strain history and TGF-β1 induce urinary bladder wall smooth muscle remodeling and elastogenesis.

    abstract::Mechanical cues that trigger pathological remodeling in smooth muscle tissues remain largely unknown and are thought to be pivotal triggers for strain-induced remodeling. Thus, an understanding of the effects mechanical stimulation is important to elucidate underlying mechanisms of disease states and in the developmen...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0298-y

    authors: Heise RL,Parekh A,Joyce EM,Chancellor MB,Sacks MS

    更新日期:2012-01-01 00:00:00

  • The potential for intercellular mechanical interaction: simulations of single chondrocyte versus anatomically based distribution.

    abstract::Computational studies of chondrocyte mechanics, and cell mechanics in general, have typically been performed using single cell models embedded in an extracellular matrix construct. The assumption of a single cell microstructural model may not capture intercellular interactions or accurately reflect the macroscale mech...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0951-1

    authors: Halloran JP,Sibole SC,Erdemir A

    更新日期:2018-02-01 00:00:00

  • A computational model that predicts reverse growth in response to mechanical unloading.

    abstract::Ventricular growth is widely considered to be an important feature in the adverse progression of heart diseases, whereas reverse ventricular growth (or reverse remodeling) is often considered to be a favorable response to clinical intervention. In recent years, a number of theoretical models have been proposed to mode...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0598-0

    authors: Lee LC,Genet M,Acevedo-Bolton G,Ordovas K,Guccione JM,Kuhl E

    更新日期:2015-04-01 00:00:00

  • Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model.

    abstract::Ischemic stroke is a major cause of death and long-term disabilities worldwide. In this paper, we aim to represent a comprehensive simulation of the motion of emboli through cerebrovascular network within patient-specific computational model. The model consists of major arteries of the circle of Willis reconstructed f...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0762-9

    authors: Khodaee F,Vahidi B,Fatouraee N

    更新日期:2016-10-01 00:00:00

  • Small scale membrane mechanics.

    abstract::Large scale changes to lipid bilayer shapes are well represented by the Helfrich model. However, there are membrane processes that take place at smaller length scales that this model cannot address. In this work, we present a one-dimensional continuum model that captures the mechanics of the lipid bilayer membrane at ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0528-6

    authors: Rangamani P,Benjamini A,Agrawal A,Smit B,Steigmann DJ,Oster G

    更新日期:2014-08-01 00:00:00

  • The combined impact of tissue heterogeneity and fixed charge for models of cartilage: the one-dimensional biphasic swelling model revisited.

    abstract::Articular cartilage is a complex, anisotropic, stratified tissue with remarkable resilience and mechanical properties. It has been subject to extensive modelling as a multiphase medium, with many recent studies examining the impact of increasing detail in the representation of this tissue's fine scale structure. Howev...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01123-7

    authors: Klika V,Whiteley JP,Brown CP,Gaffney EA

    更新日期:2019-08-01 00:00:00

  • Modeling initial strain distribution in soft tissues with application to arteries.

    abstract::A general theory for computing and identifying the stress field in a residually stressed tissue is presented in this paper. The theory is based on the assumption that a stress free state is obtained by letting each point deform independently of its adjacent points. This local unloading represents an initial strain, an...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-005-0008-8

    authors: Olsson T,Stålhand J,Klarbring A

    更新日期:2006-03-01 00:00:00

  • A chemo-mechanical constitutive model for transiently cross-linked actin networks and a theoretical assessment of their viscoelastic behaviour.

    abstract::Biological materials can undergo large deformations and also show viscoelastic behaviour. One such material is the network of actin filaments found in biological cells, giving the cell much of its mechanical stiffness. A theory for predicting the relaxation behaviour of actin networks cross-linked with the cross-linke...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0406-7

    authors: Fallqvist B,Kroon M

    更新日期:2013-04-01 00:00:00

  • The influence of mechanical stretching on mitosis, growth, and adipose conversion in adipocyte cultures.

    abstract::The mechanotransduction of adipocytes is not well characterized in the literature. In this study, we employ stochastic modeling fitted to experiments for characterizing the influence of mechanical stretching delivered to adipocyte monolayers on the probabilities of commitment to the adipocyte lineage, mitosis, and gro...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0371-6

    authors: Shoham N,Gefen A

    更新日期:2012-09-01 00:00:00