Young's modulus of elasticity of Schlemm's canal endothelial cells.

Abstract:

:Schlemm's canal (SC) endothelial cells are likely important in the physiology and pathophysiology of the aqueous drainage system of the eye, particularly in glaucoma. The mechanical stiffness of these cells determines, in part, the extent to which they can support a pressure gradient and thus can be used to place limits on the flow resistance that this layer can generate in the eye. However, little is known about the biomechanical properties of SC endothelial cells. Our goal in this study was to estimate the effective Young's modulus of elasticity of normal SC cells. To do so, we combined magnetic pulling cytometry of isolated cultured human SC cells with finite element modeling of the mechanical response of the cell to traction forces applied by adherent beads. Preliminary work showed that the immersion angles of beads attached to the SC cells had a major influence on bead response; therefore, we also measured bead immersion angle by confocal microscopy, using an empirical technique to correct for axial distortion of the confocal images. Our results showed that the upper bound for the effective Young's modulus of elasticity of the cultured SC cells examined in this study, in central, non-nuclear regions, ranged between 1,007 and 3,053 Pa, which is similar to, although somewhat larger than values that have been measured for other endothelial cell types. We compared these values to estimates of the modulus of primate SC cells in vivo, based on images of these cells under pressure loading, and found good agreement at low intraocular pressure (8-15 mm Hg). However, increasing intraocular pressure (22-30 mm Hg) appeared to cause a significant increase in the modulus of these cells. These moduli can be used to estimate the extent to which SC cells deform in response to the pressure drop across the inner wall endothelium and thereby estimate the extent to which they can generate outflow resistance.

authors

Zeng D,Juzkiw T,Read AT,Chan DW,Glucksberg MR,Ethier CR,Johnson M

doi

10.1007/s10237-009-0156-3

subject

Has Abstract

pub_date

2010-02-01 00:00:00

pages

19-33

issue

1

eissn

1617-7959

issn

1617-7940

journal_volume

9

pub_type

杂志文章
  • The influence of mechanical stretching on mitosis, growth, and adipose conversion in adipocyte cultures.

    abstract::The mechanotransduction of adipocytes is not well characterized in the literature. In this study, we employ stochastic modeling fitted to experiments for characterizing the influence of mechanical stretching delivered to adipocyte monolayers on the probabilities of commitment to the adipocyte lineage, mitosis, and gro...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0371-6

    authors: Shoham N,Gefen A

    更新日期:2012-09-01 00:00:00

  • A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress.

    abstract::A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章,评审

    doi:10.1007/s10237-015-0743-4

    authors: Wang Y,Wang W,Li Z,Hao S,Wang B

    更新日期:2016-10-01 00:00:00

  • An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium.

    abstract::Knowledge of the complete three-dimensional (3D) mechanical behavior of soft tissues is essential in understanding their pathophysiology and in developing novel therapies. Despite significant progress made in experimentation and modeling, a complete approach for the full characterization of soft tissue 3D behavior rem...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0943-1

    authors: Avazmohammadi R,Li DS,Leahy T,Shih E,Soares JS,Gorman JH,Gorman RC,Sacks MS

    更新日期:2018-02-01 00:00:00

  • Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall.

    abstract::Both the clinically established diameter criterion and novel approaches of computational finite element (FE) analyses for rupture risk stratification of abdominal aortic aneurysms (AAA) are based on assumptions of population-averaged, uniform material properties for the AAA wall. The presence of inter-patient and intr...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0436-1

    authors: Reeps C,Maier A,Pelisek J,Härtl F,Grabher-Meier V,Wall WA,Essler M,Eckstein HH,Gee MW

    更新日期:2013-08-01 00:00:00

  • Velocity profiles in the human ductus venosus: a numerical fluid structure interaction study.

    abstract::The veins distributing oxygenated blood from the placenta to the fetal body have been given much attention in clinical Doppler velocimetry studies, in particular the ductus venosus. The ductus venosus is embedded in the left liver lobe and connects the intra-abdominal portion of the umbilical vein (IUV) directly to th...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0460-1

    authors: Leinan PR,Degroote J,Kiserud T,Skallerud B,Vierendeels J,Hellevik LR

    更新日期:2013-10-01 00:00:00

  • The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.

    abstract::The integrity of articular cartilage depends on the proper functioning and mechanical stimulation of chondrocytes, the cells that synthesize extracellular matrix and maintain tissue health. The biosynthetic activity of chondrocytes is influenced by genetic factors, environmental influences, extracellular matrix compos...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0016-3

    authors: Han SK,Federico S,Grillo A,Giaquinta G,Herzog W

    更新日期:2007-04-01 00:00:00

  • Flow plate separation of cells based on elastic properties: a computational study.

    abstract::Medical studies have consistently shown that the best defense against cancer is early detection. Due to this, many efforts have been made to develop methods of screening patient blood quickly and cheaply. These methods range from separation via differences in size, electrostatic potential, chemical potential, antibody...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1093-9

    authors: Becton M,Averett RD,Wang X

    更新日期:2019-04-01 00:00:00

  • Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis.

    abstract::The superficial femoral artery (SFA) is a typical atherosclerosis-prone site. We aimed to explore whether the tortuosity of the SFA associates with the occurrence of atherosclerosis and investigate how vascular tortuosity influences the characteristics of blood flow. Ten patients diagnosed with atherosclerotic disease...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01118-4

    authors: Li X,Liu X,Li X,Xu L,Chen X,Liang F

    更新日期:2019-08-01 00:00:00

  • A computational model that predicts reverse growth in response to mechanical unloading.

    abstract::Ventricular growth is widely considered to be an important feature in the adverse progression of heart diseases, whereas reverse ventricular growth (or reverse remodeling) is often considered to be a favorable response to clinical intervention. In recent years, a number of theoretical models have been proposed to mode...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0598-0

    authors: Lee LC,Genet M,Acevedo-Bolton G,Ordovas K,Guccione JM,Kuhl E

    更新日期:2015-04-01 00:00:00

  • Mean arterial pressure nonlinearity in an elastic circulatory system subjected to different hematocrits.

    abstract::The level of hematocrit (Hct) is known to affect mean arterial pressure (MAP) by influencing blood viscosity. In the healthy population, an increase in Hct (and corresponding increase in viscosity) tends to raise MAP. However, data from a clinical study of type 2 diabetic patients indicate that this relationship is no...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0258-y

    authors: Branigan T,Bolster D,Vázquez BY,Intaglietta M,Tartakovsky DM

    更新日期:2011-07-01 00:00:00

  • A mathematical model for fluid shear-sensitive 3D tissue construct development.

    abstract::This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0378-7

    authors: Liu D,Chua CK,Leong KF

    更新日期:2013-01-01 00:00:00

  • Mathematical modelling of corneal swelling.

    abstract::This paper presents a differential model of the corneal transport system capable of modelling thickness changes in response to osmotic perturbations applied to either limiting membrane. The work is directed towards understanding corneal behaviour in vivo. The model considers the coupled viscous flows within the cornea...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-004-0054-7

    authors: Li LY,Tighe BJ,Ruberti JW

    更新日期:2004-11-01 00:00:00

  • Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation.

    abstract::Cell deformability and mechanical responses of living cells depend closely on the dynamic changes in the structural architecture of the cytoskeleton (CSK). To describe the dynamic reorganization and the heterogeneity of the prestressed multi-modular CSK, we developed a two-dimensional model for the CSK which was taken...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0057-7

    authors: Milan JL,Wendling-Mansuy S,Jean M,Chabrand P

    更新日期:2007-11-01 00:00:00

  • The potential for intercellular mechanical interaction: simulations of single chondrocyte versus anatomically based distribution.

    abstract::Computational studies of chondrocyte mechanics, and cell mechanics in general, have typically been performed using single cell models embedded in an extracellular matrix construct. The assumption of a single cell microstructural model may not capture intercellular interactions or accurately reflect the macroscale mech...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0951-1

    authors: Halloran JP,Sibole SC,Erdemir A

    更新日期:2018-02-01 00:00:00

  • Computational analysis of biomechanical contributors to possible endovascular graft failure.

    abstract::This paper evaluates numerically coupled blood flow and wall structure interactions in a representative stented abdominal aortic aneurysm (AAA) model, leading potentially to endovascular graft (EVG) failure. A total of 12 biomechanical contributors to possible EVG migration were considered. The results show that after...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-005-0003-0

    authors: Li Z,Kleinstreuer C,Farber M

    更新日期:2005-12-01 00:00:00

  • Moderately degenerated lumbar motion segments: Are they truly unstable?

    abstract::The two main load bearing tissues of the intervertebral disc are the nucleus pulposus and the annulus fibrosus. Both tissues are composed of the same basic components, but differ in their organization and relative amounts. With degeneration, the clear distinction between the two tissues disappears. The changes in bioc...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0835-9

    authors: van Rijsbergen MM,Barthelemy VM,Vrancken AC,Crijns SP,Wilke HJ,Wilson W,van Rietbergen B,Ito K

    更新日期:2017-04-01 00:00:00

  • An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure.

    abstract::Determining the biomechanical behavior of heart valve leaflet tissues in a noninvasive manner remains an important clinical goal. While advances in 3D imaging modalities have made in vivo valve geometric data available, optimal methods to exploit such information in order to obtain functional information remain to be ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0732-7

    authors: Aggarwal A,Sacks MS

    更新日期:2016-08-01 00:00:00

  • Prediction of cell growth rate over scaffold strands inside a perfusion bioreactor.

    abstract::Mathematical and computational modeling of the dynamic process where tissue scaffolds are cultured in perfusion bioreactors is able to provide insight into the cell and tissue growth which can facilitate the design of tissue scaffolds and selection of optimal operating conditions. To date, a resolved-scale simulation ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0606-4

    authors: Hossain MS,Bergstrom DJ,Chen XB

    更新日期:2015-04-01 00:00:00

  • Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage.

    abstract::The collagen fibril network is an important factor for the depth-dependent mechanical behaviour of adult articular cartilage (AC). Recent studies show that collagen orientation is parallel to the articular surface throughout the tissue depth in perinatal animals, and that the collagen orientations transform to a depth...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0233-7

    authors: van Turnhout MC,Kranenbarg S,van Leeuwen JL

    更新日期:2011-04-01 00:00:00

  • Mechanochemical coupling of formin-induced actin interaction at the level of single molecular complex.

    abstract::Formins promote actin assembly and are involved in force-dependent cytoskeletal remodeling. However, how force alters the formin functions still needs to be investigated. Here, using atomic force microscopy and biomembrane force probe, we investigated how mechanical force affects formin-mediated actin interactions at ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01284-5

    authors: Li Z,Lee H,Eskin SG,Ono S,Zhu C,McIntire LV

    更新日期:2020-10-01 00:00:00

  • The effect of the elongation of the proximal aorta on the estimation of the aortic wall distensibility.

    abstract::The compliance of the proximal aortic wall is a major determinant of cardiac afterload. Aortic compliance is often estimated based on cross-sectional area changes over the pulse pressure, under the assumption of a negligible longitudinal stretch during the pulse. However, the proximal aorta is subjected to significant...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01371-y

    authors: Pagoulatou SZ,Ferraro M,Trachet B,Bikia V,Rovas G,Crowe LA,Vallée JP,Adamopoulos D,Stergiopulos N

    更新日期:2020-07-31 00:00:00

  • A hybrid bioregulatory model of angiogenesis during bone fracture healing.

    abstract::Bone fracture healing is a complex process in which angiogenesis or the development of a blood vessel network plays a crucial role. In this paper, a mathematical model is presented that simulates the biological aspects of fracture healing including the formation of individual blood vessels. The model consists of parti...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0241-7

    authors: Peiffer V,Gerisch A,Vandepitte D,Van Oosterwyck H,Geris L

    更新日期:2011-06-01 00:00:00

  • Creep and stress relaxation of human red cell membrane.

    abstract::In contrast to most mechanical properties of the red cell, experimental information on stress relaxation (SR) of the membrane skeleton is scarce. On the other hand, many postulates or assumptions as to the value of the characteristic time of SR [Formula: see text] can be found in the literature. Here, an experiment is...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0813-2

    authors: Fischer TM

    更新日期:2017-02-01 00:00:00

  • A computational thrombus formation model: application to an idealized two-dimensional aneurysm treated with bare metal coils.

    abstract::Cardiovascular implantable devices alter the biofluid dynamics and biochemistry of the blood in which they are placed. These perturbations can lead to thrombus formation which may or may not be desired, depending on the application. In this work, a computational model is developed that couples biofluid dynamics and bi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1059-y

    authors: Horn JD,Maitland DJ,Hartman J,Ortega JM

    更新日期:2018-12-01 00:00:00

  • Residual time of sinusoidal metachronal ciliary flow of non-Newtonian fluid through ciliated walls: fertilization and implantation.

    abstract::The monitoring of the ciliated walls in the uterine tube has supreme importance in enhancing the sperm to reach the egg (capacitation processes), and at peristaltic ciliary flow has a more favorable residual time along the canal when compared to the peristaltic flow. Based on the importance of this study, a mathematic...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01405-5

    authors: Zaher AZ,Moawad AMA,Mekheimer KS,Bhatti MM

    更新日期:2021-01-03 00:00:00

  • Simulation of cell-substrate traction force dynamics in response to soluble factors.

    abstract::Finite element (FE) simulations of contractile responses of vascular muscular thin films (vMTFs) and endothelial cells resting on an array of microposts under stimulation of soluble factors were conducted in comparison with experimental measurements reported in the literature. Two types of constitutive models were emp...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0886-6

    authors: Liu T

    更新日期:2017-08-01 00:00:00

  • Enhanced cancer cell invasion caused by fibroblasts when fluid flow is present.

    abstract::It has been demonstrated that interstitial fluid (IF) flow can play a crucial role in tumor cell progression. Swartz and collaborators (Cancer Cell 11: 526-538, Shields et al. 2007) demonstrated that cells that secrete the lymphoid homing chemokines CCL21/CCL19 and express their receptor CCR7 could use flow to bias th...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01128-2

    authors: Urdal J,Waldeland JO,Evje S

    更新日期:2019-08-01 00:00:00

  • Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    abstract::We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0658-0

    authors: Jiang Y,Li G,Qian LX,Liang S,Destrade M,Cao Y

    更新日期:2015-10-01 00:00:00

  • Multi-factor decision-making strategy for better coronary plaque burden increase prediction: a patient-specific 3D FSI study using IVUS follow-up data.

    abstract::Plaque progression and vulnerability are influenced by many risk factors. Our goal is to find a simple method to combine multiple risk factors for better plaque development prediction. Intravascular ultrasound data at baseline and follow-up were acquired from nine patients, and fluid-structure interaction models were ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01143-3

    authors: Wang L,Tang D,Maehara A,Molony D,Zheng J,Samady H,Wu Z,Lu W,Zhu J,Ma G,Giddens DP,Stone GW,Mintz GS

    更新日期:2019-10-01 00:00:00

  • An elasto-viscoplastic model to describe the ratcheting behavior of articular cartilage.

    abstract::In the present work, a constitutive model for articular cartilage is proposed in finite elasto-viscoplasticity. For simplification, articular cartilage is supposed to be a typical composite composed of a soft basis and a fiber assembly. The stress tensor and free energy function are hence accordingly divided into two ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1062-3

    authors: Zhu Y

    更新日期:2018-12-01 00:00:00