A mathematical model for fluid shear-sensitive 3D tissue construct development.

Abstract:

:This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low as 0.002 cm/s, can support much better mass exchange, higher cell number, and more even cell and nutrient distribution compared to static culture. Higher flow rate can further improve nutrient supply and mass exchange in the construct, promoting better nutritious environment and cell proliferation compared to lower flow rate. In addition, consideration of flow shear stress predicts much higher cell number in the construct compared to that without shear consideration. While the nutrient can dominate shear stress in influencing cell proliferation, the shear effect increases with flow rate. The proposed model helps tissue engineers better understand the cell-flow relationship at the molecular level during dynamic culture.

authors

Liu D,Chua CK,Leong KF

doi

10.1007/s10237-012-0378-7

subject

Has Abstract

pub_date

2013-01-01 00:00:00

pages

19-31

issue

1

eissn

1617-7959

issn

1617-7940

journal_volume

12

pub_type

杂志文章
  • Moderately degenerated lumbar motion segments: Are they truly unstable?

    abstract::The two main load bearing tissues of the intervertebral disc are the nucleus pulposus and the annulus fibrosus. Both tissues are composed of the same basic components, but differ in their organization and relative amounts. With degeneration, the clear distinction between the two tissues disappears. The changes in bioc...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0835-9

    authors: van Rijsbergen MM,Barthelemy VM,Vrancken AC,Crijns SP,Wilke HJ,Wilson W,van Rietbergen B,Ito K

    更新日期:2017-04-01 00:00:00

  • Assessment of boundary conditions for CFD simulation in human carotid artery.

    abstract::Computational fluid dynamics (CFD) is an increasingly used method for investigation of hemodynamic parameters and their alterations under pathological conditions, which are important indicators for diagnosis of cardiovascular disease. In hemodynamic simulation models, the employment of appropriate boundary conditions ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1045-4

    authors: Xu P,Liu X,Zhang H,Ghista D,Zhang D,Shi C,Huang W

    更新日期:2018-12-01 00:00:00

  • A mechanical model of posterior vitreous detachment and generation of vitreoretinal tractions.

    abstract::We propose a mechanical model of generation of vitreoretinal tractions in the presence of posterior vitreous detachment (PVD). PVD is a common occurrence with aging, and it consists in the separation of the vitreous body from the retina at the back pole of the eye, due to progressive shrinking of the vitreous gel. Dur...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01360-1

    authors: Di Michele F,Tatone A,Romano MR,Repetto R

    更新日期:2020-12-01 00:00:00

  • Mechanomics analysis of hESCs under combined mechanical shear, stretch, and compression.

    abstract::Human embryonic stem cells (hESCs) can differentiate to three germ layers within biochemical and biomechanical niches. The complicated mechanical environments in vivo could have diverse effects on the fate decision and biological functions of hESCs. To globally screen mechanosensitive molecules, three typical types of...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01378-5

    authors: Zhang F,Wang J,Lü D,Zheng L,Shangguan B,Gao Y,Wu Y,Long M

    更新日期:2020-08-18 00:00:00

  • Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.

    abstract::Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0989-0

    authors: Lejeune E,Linder C

    更新日期:2018-06-01 00:00:00

  • Matrix homeostasis within the immature annulus fibrosus depends on the frequency of dynamic compression: a study based on the self-developed mechanically active bioreactor.

    abstract::Evidence suggests that mechanical load is related to structural destruction of disk annulus fibrosus (AF) either in adult disk degeneration or in child disk acute injury. Both biochemical and biomechanical properties are different between immature and mature disks. However, the effects of mechanical compression on imm...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0823-0

    authors: Li P,Gan Y,Xu Y,Song L,Wang H,Zhang C,Wang L,Zhao C,Luo L,Zhou Q

    更新日期:2017-04-01 00:00:00

  • An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure.

    abstract::Determining the biomechanical behavior of heart valve leaflet tissues in a noninvasive manner remains an important clinical goal. While advances in 3D imaging modalities have made in vivo valve geometric data available, optimal methods to exploit such information in order to obtain functional information remain to be ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0732-7

    authors: Aggarwal A,Sacks MS

    更新日期:2016-08-01 00:00:00

  • What factors determine the number of nonmuscle myosin II in the sarcomeric unit of stress fibers?

    abstract::Actin stress fibers (SFs), a contractile apparatus in nonmuscle cells, possess a contractile unit that is apparently similar to the sarcomere of myofibrils in muscles. The function of SFs has thus often been addressed based on well-characterized properties of muscles. However, unlike the fixed number of myosin molecul...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01375-8

    authors: Saito T,Huang W,Matsui TS,Kuragano M,Takahashi M,Deguchi S

    更新日期:2020-08-10 00:00:00

  • A novel method for non-invasively detecting the severity and location of aortic aneurysms.

    abstract::The influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0884-8

    authors: Sazonov I,Khir AW,Hacham WS,Boileau E,Carson JM,van Loon R,Ferguson C,Nithiarasu P

    更新日期:2017-08-01 00:00:00

  • Modeling left ventricular dynamics with characteristic deformation modes.

    abstract::A computationally efficient method is described for simulating the dynamics of the left ventricle (LV) in three dimensions. LV motion is represented as a combination of a limited number of deformation modes, chosen to represent observed cardiac motions while conserving volume in the LV wall. The contribution of each m...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01168-8

    authors: Hong BD,Moulton MJ,Secomb TW

    更新日期:2019-12-01 00:00:00

  • The combined impact of tissue heterogeneity and fixed charge for models of cartilage: the one-dimensional biphasic swelling model revisited.

    abstract::Articular cartilage is a complex, anisotropic, stratified tissue with remarkable resilience and mechanical properties. It has been subject to extensive modelling as a multiphase medium, with many recent studies examining the impact of increasing detail in the representation of this tissue's fine scale structure. Howev...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01123-7

    authors: Klika V,Whiteley JP,Brown CP,Gaffney EA

    更新日期:2019-08-01 00:00:00

  • Young's modulus of elasticity of Schlemm's canal endothelial cells.

    abstract::Schlemm's canal (SC) endothelial cells are likely important in the physiology and pathophysiology of the aqueous drainage system of the eye, particularly in glaucoma. The mechanical stiffness of these cells determines, in part, the extent to which they can support a pressure gradient and thus can be used to place limi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-009-0156-3

    authors: Zeng D,Juzkiw T,Read AT,Chan DW,Glucksberg MR,Ethier CR,Johnson M

    更新日期:2010-02-01 00:00:00

  • An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion.

    abstract::We propose and analyse the properties of a new class of models for the electromechanics of cardiac tissue. The set of governing equations consists of nonlinear elasticity using a viscoelastic and orthotropic exponential constitutive law, for both active stress and active strain formulations of active mechanics, couple...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01237-y

    authors: Propp A,Gizzi A,Levrero-Florencio F,Ruiz-Baier R

    更新日期:2020-04-01 00:00:00

  • A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models.

    abstract::In this paper we introduce a novel method for prescribing terminal boundary conditions in one-dimensional arterial flow networks. This is carried out by coupling the terminal arterial vessel with a poro-elastic tube, representing the flow resistance offered by microcirculation. The performance of the proposed porous m...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01122-8

    authors: Coccarelli A,Prakash A,Nithiarasu P

    更新日期:2019-08-01 00:00:00

  • Injury risk prediction from computational simulations of ocular blast loading.

    abstract::A predictive Lagrangian-Eulerian finite element eye model was used to analyze 2.27 and 0.45 kg trinitrotoluene equivalent blasts detonated from 24 different locations. Free air and ground level blasts were simulated directly in front of the eye and at lateral offset locations with box, average, less protective, and mo...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0830-1

    authors: Weaver AA,Stitzel SM,Stitzel JD

    更新日期:2017-04-01 00:00:00

  • Computational analysis of biomechanical contributors to possible endovascular graft failure.

    abstract::This paper evaluates numerically coupled blood flow and wall structure interactions in a representative stented abdominal aortic aneurysm (AAA) model, leading potentially to endovascular graft (EVG) failure. A total of 12 biomechanical contributors to possible EVG migration were considered. The results show that after...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-005-0003-0

    authors: Li Z,Kleinstreuer C,Farber M

    更新日期:2005-12-01 00:00:00

  • Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    abstract::We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0658-0

    authors: Jiang Y,Li G,Qian LX,Liang S,Destrade M,Cao Y

    更新日期:2015-10-01 00:00:00

  • Dynamic modeling for shear stress induced ATP release from vascular endothelial cells.

    abstract::A dynamic model is proposed for shear stress induced adenosine triphosphate (ATP) release from endothelial cells (ECs). The dynamic behavior of the ATP/ADP concentration at the endothelial surface by viscous shear flow is investigated through simulation studies based on the dynamic ATP release model. The numerical res...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-007-0088-8

    authors: Qin KR,Xiang C,Xu Z,Cao LL,Ge SS,Jiang ZL

    更新日期:2008-10-01 00:00:00

  • An elasto-viscoplastic model to describe the ratcheting behavior of articular cartilage.

    abstract::In the present work, a constitutive model for articular cartilage is proposed in finite elasto-viscoplasticity. For simplification, articular cartilage is supposed to be a typical composite composed of a soft basis and a fiber assembly. The stress tensor and free energy function are hence accordingly divided into two ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1062-3

    authors: Zhu Y

    更新日期:2018-12-01 00:00:00

  • White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities.

    abstract::A systematic correlation between finite element models (FEMs) and histopathology is needed to define deformation thresholds associated with traumatic brain injury (TBI). In this study, a FEM of a transected piglet brain was used to reverse engineer the range of optimal shear moduli for infant (5 days old, 553-658 Pa) ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0643-z

    authors: Sullivan S,Eucker SA,Gabrieli D,Bradfield C,Coats B,Maltese MR,Lee J,Smith C,Margulies SS

    更新日期:2015-08-01 00:00:00

  • Experimental analysis of the transverse mechanical behaviour of annulus fibrosus tissue.

    abstract::Uniaxial tensile and relaxation tests were carried out on annulus fibrosus samples carved out in the circumferential direction. Images were shot perpendicularly to the loading direction. Digital image correlation techniques accurately measured the evolution of full displacement fields in both transverse directions: pl...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0524-x

    authors: Baldit A,Ambard D,Cherblanc F,Royer P

    更新日期:2014-06-01 00:00:00

  • Material model of pelvic bone based on modal analysis: a study on the composite bone.

    abstract::Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's mo...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0822-1

    authors: Henyš P,Čapek L

    更新日期:2017-02-01 00:00:00

  • Multi-view stereo analysis reveals anisotropy of prestrain, deformation, and growth in living skin.

    abstract::Skin expansion delivers newly grown skin that maintains histological and mechanical features of the original tissue. Although it is the gold standard for cutaneous defect correction today, the underlying mechanisms remain poorly understood. Here we present a novel technique to quantify anisotropic prestrain, deformati...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0650-8

    authors: Buganza Tepole A,Gart M,Purnell CA,Gosain AK,Kuhl E

    更新日期:2015-10-01 00:00:00

  • Computational neurotrauma--design, simulation, and analysis of controlled cortical impact model.

    abstract::The controlled cortical impact (CCI) model is widely used in many laboratories to study traumatic brain injury (TBI). Although external impact parameters during CCI tests could be clearly defined, little is known about the internal tissue-level mechanical responses of the rat brain. Furthermore, the external impact pa...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0212-z

    authors: Mao H,Yang KH,King AI,Yang K

    更新日期:2010-12-01 00:00:00

  • Development of fibroblast-seeded collagen gels under planar biaxial mechanical constraints: a biomechanical study.

    abstract::Prior studies indicated that mechanical loading influences cell turnover and matrix remodeling in tissues, suggesting that mechanical stimuli can play an active role in engineering artificial tissues. While most tissue culture studies focus on influence of uniaxial loading or constraints, effects of multi-axial loadin...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0448-x

    authors: Hu JJ,Liu YC,Chen GW,Wang MX,Lee PY

    更新日期:2013-10-01 00:00:00

  • A time-dependent phenomenological model for cell mechano-sensing.

    abstract::Adherent cells normally apply forces as a generic means of sensing and responding to the mechanical nature of their surrounding environment. How these forces vary as a function of the extracellular rigidity is critical to understanding the regulatory functions that drive important phenomena such as wound healing or mu...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0508-x

    authors: Borau C,Kamm RD,García-Aznar JM

    更新日期:2014-04-01 00:00:00

  • Determining constitutive behavior of the brain tissue using digital image correlation and finite element modeling.

    abstract::Detailed knowledge about the mechanical properties of brain can improve numerical modeling of the brain under various loading conditions. The success of this modeling depends on constitutive model and reliable extraction of its material constants. The isotropy of the brain tissue is a key factor which affects the form...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01186-6

    authors: Felfelian AM,Baradaran Najar A,Jafari Nedoushan R,Salehi H

    更新日期:2019-12-01 00:00:00

  • Modeling cell proliferation for simulating three-dimensional tissue morphogenesis based on a reversible network reconnection framework.

    abstract::Tissue morphogenesis in multicellular organisms is accompanied by proliferative cell behaviors: cell division (increase in cell number after each cell cycle) and cell growth (increase in cell volume during each cell cycle). These proliferative cell behaviors can be regulated by multicellular dynamics to achieve proper...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0458-8

    authors: Okuda S,Inoue Y,Eiraku M,Sasai Y,Adachi T

    更新日期:2013-10-01 00:00:00

  • Simulation of cell-substrate traction force dynamics in response to soluble factors.

    abstract::Finite element (FE) simulations of contractile responses of vascular muscular thin films (vMTFs) and endothelial cells resting on an array of microposts under stimulation of soluble factors were conducted in comparison with experimental measurements reported in the literature. Two types of constitutive models were emp...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0886-6

    authors: Liu T

    更新日期:2017-08-01 00:00:00

  • The influence of load repetition in bone mechanotransduction using poroelastic finite-element models: the impact of permeability.

    abstract::Experimental evidence suggests that interstitial fluid flow is a stimulus for mechanoadaptation in bone. Bone adaptation is sensitive to the frequency of loading and rest insertion between load cycles. We investigated the effects of permeability, frequency and rest insertion on fluid flow in bone using finite-element ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0498-8

    authors: Pereira AF,Shefelbine SJ

    更新日期:2014-01-01 00:00:00