Global environmental costs of China's thirst for milk.

Abstract:

:China has an ever-increasing thirst for milk, with a predicted 3.2-fold increase in demand by 2050 compared to the production level in 2010. What are the environmental implications of meeting this demand, and what is the preferred pathway? We addressed these questions by using a nexus approach, to examine the interdependencies of increasing milk consumption in China by 2050 and its global impacts, under different scenarios of domestic milk production and importation. Meeting China's milk demand in a business as usual scenario will increase global dairy-related (China and the leading milk exporting regions) greenhouse gas (GHG) emissions by 35% (from 565 to 764 Tg CO2eq ) and land use for dairy feed production by 32% (from 84 to 111 million ha) compared to 2010, while reactive nitrogen losses from the dairy sector will increase by 48% (from 3.6 to 5.4 Tg nitrogen). Producing all additional milk in China with current technology will greatly increase animal feed import; from 1.9 to 8.5 Tg for concentrates and from 1.0 to 6.2 Tg for forage (alfalfa). In addition, it will increase domestic dairy related GHG emissions by 2.2 times compared to 2010 levels. Importing the extra milk will transfer the environmental burden from China to milk exporting countries; current dairy exporting countries may be unable to produce all additional milk due to physical limitations or environmental preferences/legislation. For example, the farmland area for cattle-feed production in New Zealand would have to increase by more than 57% (1.3 million ha) and that in Europe by more than 39% (15 million ha), while GHG emissions and nitrogen losses would increase roughly proportionally with the increase of farmland in both regions. We propose that a more sustainable dairy future will rely on high milk demanding regions (such as China) improving their domestic milk and feed production efficiencies up to the level of leading milk producing countries. This will decrease the global dairy related GHG emissions and land use by 12% (90 Tg CO2eq reduction) and 30% (34 million ha land reduction) compared to the business as usual scenario, respectively. However, this still represents an increase in total GHG emissions of 19% whereas land use will decrease by 8% when compared with 2010 levels, respectively.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Bai Z,Lee MRF,Ma L,Ledgard S,Oenema O,Velthof GL,Ma W,Guo M,Zhao Z,Wei S,Li S,Liu X,Havlík P,Luo J,Hu C,Zhang F

doi

10.1111/gcb.14047

subject

Has Abstract

pub_date

2018-05-01 00:00:00

pages

2198-2211

issue

5

eissn

1354-1013

issn

1365-2486

journal_volume

24

pub_type

杂志文章
  • Warming alters coupled carbon and nutrient cycles in experimental streams.

    abstract::Although much effort has been devoted to quantifying how warming alters carbon cycling across diverse ecosystems, less is known about how these changes are linked to the cycling of bioavailable nitrogen and phosphorus. In freshwater ecosystems, benthic biofilms (i.e. thin films of algae, bacteria, fungi, and detrital ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13205

    authors: Williamson TJ,Cross WF,Benstead JP,Gíslason GM,Hood JM,Huryn AD,Johnson PW,Welter JR

    更新日期:2016-06-01 00:00:00

  • Broken bridges: The isolation of Kilimanjaro's ecosystem.

    abstract::Biodiversity studies of global change mainly focus on direct impacts such as losses in species numbers or ecosystem functions. In this study, we focus on the long-term effects of recent land-cover conversion and subsequent ecological isolation of Kilimanjaro on biodiversity in a paleobiogeographical context, linking o...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14078

    authors: Hemp A,Hemp C

    更新日期:2018-08-01 00:00:00

  • Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings.

    abstract::Simultaneously with warming climate, other climatic and environmental factors are also changing. Here, we investigated for the first time the effects of elevated temperature, increased ultraviolet-B (UVB) radiation, fertilization and all combinations of these on the growth, secondary chemistry and needle structure of ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12464

    authors: Virjamo V,Sutinen S,Julkunen-Tiitto R

    更新日期:2014-07-01 00:00:00

  • 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation?

    abstract::Free-air CO2 enrichment (FACE) allows open-air elevation of [CO2 ] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta-analysis. Subsequent studies have combine...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.15375

    authors: Ainsworth EA,Long SP

    更新日期:2021-01-01 00:00:00

  • Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.

    abstract::Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento-San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that ar...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12745

    authors: Knox SH,Sturtevant C,Matthes JH,Koteen L,Verfaillie J,Baldocchi D

    更新日期:2015-02-01 00:00:00

  • Moderate disturbances accelerate forest transition dynamics under climate change in the temperate-boreal ecotone of eastern North America.

    abstract::Several temperate tree species are expected to migrate northward and colonize boreal forests in response to climate change. Tree migrations could lead to transitions in forest types, but these could be influenced by several non-climatic factors, such as disturbances and soil conditions. We analysed over 10,000 forest ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15143

    authors: Brice MH,Vissault S,Vieira W,Gravel D,Legendre P,Fortin MJ

    更新日期:2020-08-01 00:00:00

  • Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

    abstract::With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12482

    authors: Gilroy JJ,Woodcock P,Edwards FA,Wheeler C,Medina Uribe CA,Haugaasen T,Edwards DP

    更新日期:2014-07-01 00:00:00

  • The influence of historical climate changes on Southern Ocean marine predator populations: a comparative analysis.

    abstract::The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher-order predators. Here, we compare the long-term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundanc...

    journal_title:Global change biology

    pub_type: 历史文章,杂志文章,评审

    doi:10.1111/gcb.13104

    authors: Younger JL,Emmerson LM,Miller KJ

    更新日期:2016-02-01 00:00:00

  • Four decades of plant community change along a continental gradient of warming.

    abstract::Many studies of individual sites have revealed biotic changes consistent with climate warming (e.g., upward elevational distribution shifts), but our understanding of the tremendous variation among studies in the magnitude of such biotic changes is minimal. In this study, we resurveyed forest vegetation plots 40 years...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14568

    authors: Becker-Scarpitta A,Vissault S,Vellend M

    更新日期:2019-05-01 00:00:00

  • Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species.

    abstract::Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range-wide, spatially...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12510

    authors: Pomara LY,LeDee OE,Martin KJ,Zuckerberg B

    更新日期:2014-07-01 00:00:00

  • Cocoa agroforestry is less resilient to suboptimal and extreme climate than cocoa in full sun: Reply to Norgrove (2017).

    abstract::Resilience of cocoa agroforestry vs. full sun under extreme climatic conditions. In the specific case of our study, the two shade tree species associated with cocoa resulted in strong competition for water and became a disadvantage to the cocoa plants contrary to expected positive effects. ...

    journal_title:Global change biology

    pub_type: 评论,信件

    doi:10.1111/gcb.14044

    authors: Abdulai I,Vaast P,Hoffmann MP,Asare R,Jassogne L,Asten PV,Rötter RP,Graefe S

    更新日期:2018-05-01 00:00:00

  • Precipitation-drainage cycles lead to hot moments in soil carbon dioxide dynamics in a Neotropical wet forest.

    abstract::Soil CO2 concentrations and emissions from tropical forests are modulated seasonally by precipitation. However, subseasonal responses to meteorological events (e.g., storms, drought) are less well known. Here, we present the effects of meteorological variability on short-term (hours to months) dynamics of soil CO2 con...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15194

    authors: Fernandez-Bou AS,Dierick D,Allen MF,Harmon TC

    更新日期:2020-09-01 00:00:00

  • Carbon emissions from agricultural expansion and intensification in the Chaco.

    abstract::Carbon emissions from land-use changes in tropical dry forest systems are poorly understood, although they are likely globally significant. The South American Chaco has recently emerged as a hot spot of agricultural expansion and intensification, as cattle ranching and soybean cultivation expand into forests, and as s...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13521

    authors: Baumann M,Gasparri I,Piquer-Rodríguez M,Gavier Pizarro G,Griffiths P,Hostert P,Kuemmerle T

    更新日期:2017-05-01 00:00:00

  • Labile carbon retention compensates for CO2 released by priming in forest soils.

    abstract::Increase of belowground C allocation by plants under global warming or elevated CO2 may promote decomposition of soil organic carbon (SOC) by priming and strongly affects SOC dynamics. The specific effects by priming of SOC depend on the amount and frequency of C inputs. Most previous priming studies have investigated...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12458

    authors: Qiao N,Schaefer D,Blagodatskaya E,Zou X,Xu X,Kuzyakov Y

    更新日期:2014-06-01 00:00:00

  • Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic.

    abstract::Climate warming is occurring at an unprecedented rate in the Arctic and is having profound effects on host-parasite interactions, including range expansion. Recently, two species of protostrongylid nematodes have emerged for the first time in muskoxen and caribou on Victoria Island in the western Canadian Arctic Archi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12315

    authors: Kutz SJ,Checkley S,Verocai GG,Dumond M,Hoberg EP,Peacock R,Wu JP,Orsel K,Seegers K,Warren AL,Abrams A

    更新日期:2013-11-01 00:00:00

  • Land-sparing agriculture sustains higher levels of avian functional diversity than land sharing.

    abstract::The ecological impacts of meeting rising demands for food production can potentially be mitigated by two competing land-use strategies: off-setting natural habitats through intensification of existing farmland (land sparing), or elevating biodiversity within the agricultural matrix via the integration of "wildlife-fri...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14601

    authors: Cannon PG,Gilroy JJ,Tobias JA,Anderson A,Haugaasen T,Edwards DP

    更新日期:2019-05-01 00:00:00

  • Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation.

    abstract::Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota-large diatoms, dinoflagellates and copepods-that traditionally fuel higher tropic levels such as fish, s...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15161

    authors: Schmidt K,Birchill AJ,Atkinson A,Brewin RJW,Clark JR,Hickman AE,Johns DG,Lohan MC,Milne A,Pardo S,Polimene L,Smyth TJ,Tarran GA,Widdicombe CE,Woodward EMS,Ussher SJ

    更新日期:2020-10-01 00:00:00

  • Nitrogen application is required to realize wheat yield stimulation by elevated CO2 but will not remove the CO2 -induced reduction in grain protein concentration.

    abstract::Elevated CO2 (eCO2 ) generally promotes increased grain yield (GY) and decreased grain protein concentration (GPC), but the extent to which these effects depend on the magnitude of fertilization remains unclear. We collected data on the eCO2 responses of GY, GPC and grain protein yield and their relationships with nit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14586

    authors: Pleijel H,Broberg MC,Högy P,Uddling J

    更新日期:2019-05-01 00:00:00

  • Risk of short-term biodiversity loss under more persistent precipitation regimes.

    abstract::Recent findings indicate that atmospheric warming increases the persistence of weather patterns in the mid-latitudes, resulting in sequences of longer dry and wet periods compared to historic averages. The alternation of progressively longer dry and wet extremes could increasingly select for species with a broad envir...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15501

    authors: Reynaert S,De Boeck HJ,Verbruggen E,Verlinden M,Flowers N,Nijs I

    更新日期:2020-12-23 00:00:00

  • Evapotranspiration and water yield of a pine-broadleaf forest are not altered by long-term atmospheric [CO2 ] enrichment under native or enhanced soil fertility.

    abstract::Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosy...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14363

    authors: Ward EJ,Oren R,Seok Kim H,Kim D,Tor-Ngern P,Ewers BE,McCarthy HR,Oishi AC,Pataki DE,Palmroth S,Phillips NG,Schäfer KVR

    更新日期:2018-10-01 00:00:00

  • Anthropogenic noise compromises antipredator behaviour in European eels.

    abstract::Increases in noise-generating human activities since the Industrial Revolution have changed the acoustic landscape of many terrestrial and aquatic ecosystems. Anthropogenic noise is now recognized as a major pollutant of international concern, and recent studies have demonstrated impacts on, for instance, hearing thre...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12685

    authors: Simpson SD,Purser J,Radford AN

    更新日期:2015-02-01 00:00:00

  • Declining glacier cover threatens the biodiversity of alpine river diatom assemblages.

    abstract::Climate change poses a considerable threat to the biodiversity of high altitude ecosystems worldwide, including cold-water river systems that are responding rapidly to a shrinking cryosphere. Most recent research has demonstrated the severe vulnerability of river invertebrates to glacier retreat but effects upon other...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14454

    authors: Fell SC,Carrivick JL,Kelly MG,Füreder L,Brown LE

    更新日期:2018-12-01 00:00:00

  • Effects of climate warming on carbon fluxes in grasslands- A global meta-analysis.

    abstract::Climate warming will affect terrestrial ecosystems in many ways, and warming-induced changes in terrestrial carbon (C) cycling could accelerate or slow future warming. So far, warming experiments have shown a wide range of C flux responses, across and within biome types. However, past meta-analyses of C flux responses...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14603

    authors: Wang N,Quesada B,Xia L,Butterbach-Bahl K,Goodale CL,Kiese R

    更新日期:2019-05-01 00:00:00

  • The climate, the fuel and the land use: Long-term regional variability of biomass burning in boreal forests.

    abstract::The influence of different drivers on changes in North American and European boreal forests biomass burning (BB) during the Holocene was investigated based on the following hypotheses: land use was important only in the southernmost regions, while elsewhere climate was the main driver modulated by changes in fuel type...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14380

    authors: Molinari C,Lehsten V,Blarquez O,Carcaillet C,Davis BAS,Kaplan JO,Clear J,Bradshaw RHW

    更新日期:2018-10-01 00:00:00

  • Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms.

    abstract::Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13652

    authors: Lefevre S,McKenzie DJ,Nilsson GE

    更新日期:2017-09-01 00:00:00

  • Finding middle ground: Extending conservation beyond wilderness areas.

    abstract::We show that because of methodological improvements, the human modification map detects higher levels of land modification and is more accurate than the human footprint map across the gradient of modification globally. While we agree that protecting the world's least modified lands or wildlands is essential for conser...

    journal_title:Global change biology

    pub_type: 评论,信件

    doi:10.1111/gcb.14900

    authors: Kennedy CM,Oakleaf JR,Baruch-Mordo S,Theobald DM,Kiesecker J

    更新日期:2020-02-01 00:00:00

  • Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture.

    abstract::Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, i...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13219

    authors: Averill C,Waring BG,Hawkes CV

    更新日期:2016-05-01 00:00:00

  • Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize.

    abstract::Maize, in rotation with soybean, forms the largest continuous ecosystem in temperate North America, therefore changes to the biosphere-atmosphere exchange of water vapor and energy of these crops are likely to have an impact on the Midwestern US climate and hydrological cycle. As a C4 crop, maize photosynthesis is alr...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12155

    authors: Hussain MZ,Vanloocke A,Siebers MH,Ruiz-Vera UM,Cody Markelz RJ,Leakey AD,Ort DR,Bernacchi CJ

    更新日期:2013-05-01 00:00:00

  • The climate sensitivity of carbon, timber, and species richness covaries with forest age in boreal-temperate North America.

    abstract::Climate change threatens the provisioning of forest ecosystem services and biodiversity (ESB). The climate sensitivity of ESB may vary with forest development from young to old-growth conditions as structure and composition shift over time and space. This study addresses knowledge gaps hindering implementation of adap...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14656

    authors: Thom D,Golivets M,Edling L,Meigs GW,Gourevitch JD,Sonter LJ,Galford GL,Keeton WS

    更新日期:2019-07-01 00:00:00

  • Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing.

    abstract::One widely documented phenological response to climate change is the earlier occurrence of spring-breeding events. While such climate change-driven shifts in phenology are common, their consequences for individuals and populations have rarely been investigated. I addressed this gap in our knowledge by using a multi-ye...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12720

    authors: Benard MF

    更新日期:2015-03-01 00:00:00