The climate, the fuel and the land use: Long-term regional variability of biomass burning in boreal forests.

Abstract:

:The influence of different drivers on changes in North American and European boreal forests biomass burning (BB) during the Holocene was investigated based on the following hypotheses: land use was important only in the southernmost regions, while elsewhere climate was the main driver modulated by changes in fuel type. BB was reconstructed by means of 88 sedimentary charcoal records divided into six different site clusters. A statistical approach was used to explore the relative contribution of (a) pollen-based mean July/summer temperature and mean annual precipitation reconstructions, (b) an independent model-based scenario of past land use (LU), and (c) pollen-based reconstructions of plant functional types (PFTs) on BB. Our hypotheses were tested with: (a) a west-east northern boreal sector with changing climatic conditions and a homogeneous vegetation, and (b) a north-south European boreal sector characterized by gradual variation in both climate and vegetation composition. The processes driving BB in boreal forests varied from one region to another during the Holocene. However, general trends in boreal biomass burning were primarily controlled by changes in climate (mean annual precipitation in Alaska, northern Quebec, and northern Fennoscandia, and mean July/summer temperature in central Canada and central Fennoscandia) and, secondarily, by fuel composition (BB positively correlated with the presence of boreal needleleaf evergreen trees in Alaska and in central and southern Fennoscandia). Land use played only a marginal role. A modification towards less flammable tree species (by promoting deciduous stands over fire-prone conifers) could contribute to reduce circumboreal wildfire risk in future warmer periods.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Molinari C,Lehsten V,Blarquez O,Carcaillet C,Davis BAS,Kaplan JO,Clear J,Bradshaw RHW

doi

10.1111/gcb.14380

subject

Has Abstract

pub_date

2018-10-01 00:00:00

pages

4929-4945

issue

10

eissn

1354-1013

issn

1365-2486

journal_volume

24

pub_type

杂志文章
  • The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models.

    abstract::Autumn senescence regulates multiple aspects of ecosystem function, along with associated feedbacks to the climate system. Despite its importance, current understanding of the drivers of senescence is limited, leading to a large spread in predictions of how the timing of senescence, and thus the length of the growing ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12890

    authors: Keenan TF,Richardson AD

    更新日期:2015-07-01 00:00:00

  • Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material.

    abstract::The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12342

    authors: Erhagen B,Öquist M,Sparrman T,Haei M,Ilstedt U,Hedenström M,Schleucher J,Nilsson MB

    更新日期:2013-12-01 00:00:00

  • Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests.

    abstract::The terrestrial forest ecosystems in the northern high latitude region have been experiencing significant warming rates over several decades. These forests are considered crucial to the climate system and global carbon cycle and are particularly vulnerable to climate change. To obtain an improved estimate of the respo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14135

    authors: Tei S,Sugimoto A

    更新日期:2018-09-01 00:00:00

  • Four decades of plant community change along a continental gradient of warming.

    abstract::Many studies of individual sites have revealed biotic changes consistent with climate warming (e.g., upward elevational distribution shifts), but our understanding of the tremendous variation among studies in the magnitude of such biotic changes is minimal. In this study, we resurveyed forest vegetation plots 40 years...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14568

    authors: Becker-Scarpitta A,Vissault S,Vellend M

    更新日期:2019-05-01 00:00:00

  • Future climate change driven sea-level rise: secondary consequences from human displacement for island biodiversity.

    abstract::Sea-level rise (SLR) due to global warming will result in the loss of many coastal areas. The direct or primary effects due to inundation and erosion from SLR are currently being assessed; however, the indirect or secondary ecological effects, such as changes caused by the displacement of human populations, have not b...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02736.x

    authors: Wetzel FT,Kissling WD,Beissmann H,Penn DJ

    更新日期:2012-09-01 00:00:00

  • Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation.

    abstract::'Blue Carbon', which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. Howe...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12543

    authors: Tokoro T,Hosokawa S,Miyoshi E,Tada K,Watanabe K,Montani S,Kayanne H,Kuwae T

    更新日期:2014-06-01 00:00:00

  • An optimality-based model explains seasonal variation in C3 plant photosynthetic capacity.

    abstract::The maximum rate of carboxylation (Vcmax ) is an essential leaf trait determining the photosynthetic capacity of plants. Existing approaches for estimating Vcmax at large scale mainly rely on empirical relationships with proxies such as leaf nitrogen/chlorophyll content or hyperspectral reflectance, or on complicated ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15276

    authors: Jiang C,Ryu Y,Wang H,Keenan TF

    更新日期:2020-07-12 00:00:00

  • Divergent long-term trends and interannual variation in ecosystem resource use efficiencies of a southern boreal old black spruce forest 1999-2017.

    abstract::Long-term trends in ecosystem resource use efficiencies (RUEs) and their controlling factors are key pieces of information for understanding how an ecosystem responds to climate change. We used continuous eddy covariance and microclimate data over the period 1999-2017 from a 120-year-old black spruce stand in central ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14674

    authors: Liu P,Black TA,Jassal RS,Zha T,Nesic Z,Barr AG,Helgason WD,Jia X,Tian Y,Stephens JJ,Ma J

    更新日期:2019-09-01 00:00:00

  • Impacts of climate and land use on N2 O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania.

    abstract::In this study, we quantify the impacts of climate and land use on soil N2 O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land-use gradients at Mt. Kilimanjaro, combining long-...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13944

    authors: Gütlein A,Gerschlauer F,Kikoti I,Kiese R

    更新日期:2018-03-01 00:00:00

  • Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing.

    abstract::One widely documented phenological response to climate change is the earlier occurrence of spring-breeding events. While such climate change-driven shifts in phenology are common, their consequences for individuals and populations have rarely been investigated. I addressed this gap in our knowledge by using a multi-ye...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12720

    authors: Benard MF

    更新日期:2015-03-01 00:00:00

  • Annual plants change in size over a century of observations.

    abstract::Studies have documented changes in animal body sizes over the last century, but very little is known about changes in plant sizes, even though reduced plant productivity is potentially responsible for declines in size of other organisms. Here, I ask whether warming trends in the Great Basin have affected plant size by...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12208

    authors: Leger EA

    更新日期:2013-07-01 00:00:00

  • Modeling optimal responses and fitness consequences in a changing Arctic.

    abstract::Animals must balance a series of costs and benefits while trying to maximize their fitness. For example, an individual may need to choose how much energy to allocate to reproduction versus growth, or how much time to spend on vigilance versus foraging. Their decisions depend on complex interactions between environment...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14681

    authors: Reimer JR,Mangel M,Derocher AE,Lewis MA

    更新日期:2019-10-01 00:00:00

  • Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change.

    abstract::Current knowledge of phenological shifts in Palearctic bird migration is largely based on data collected on migrants at their breeding grounds; little is known about the phenology of these birds at their nonbreeding grounds, and even less about that of intra-African migrants. Because climate change patterns are not un...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12857

    authors: Bussière EM,Underhill LG,Altwegg R

    更新日期:2015-06-01 00:00:00

  • Global-scale species distributions predict temperature-related changes in species composition of rocky shore communities in Britain.

    abstract::Changes in rocky shore community composition as responses to climatic fluctuations and anthropogenic warming can be shown by changes in average species thermal affinities. In this study, we derived thermal affinities for European Atlantic rocky intertidal species by matching their known distributions to patterns in av...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14968

    authors: Burrows MT,Hawkins SJ,Moore JJ,Adams L,Sugden H,Firth L,Mieszkowska N

    更新日期:2019-12-20 00:00:00

  • A catastrophic tropical drought kills hydraulically vulnerable tree species.

    abstract::Drought-related tree mortality is now a widespread phenomenon predicted to increase in magnitude with climate change. However, the patterns of which species and trees are most vulnerable to drought, and the underlying mechanisms have remained elusive, in part due to the lack of relevant data and difficulty of predicti...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15037

    authors: Powers JS,Vargas G G,Brodribb TJ,Schwartz NB,Pérez-Aviles D,Smith-Martin CM,Becknell JM,Aureli F,Blanco R,Calderón-Morales E,Calvo-Alvarado JC,Calvo-Obando AJ,Chavarría MM,Carvajal-Vanegas D,Jiménez-Rodríguez CD,Murillo Cha

    更新日期:2020-05-01 00:00:00

  • Dramatic changes in a phytoplankton community in response to local and global pressures: a 24-year survey of the river Loire (France).

    abstract::The impact of climate change and of other anthropogenic pressures on the structure and composition of phytoplankton communities of large European rivers remains poorly documented. Here we report the findings of a study of the changes in the phytoplankton community of the middle segment of the river Loire over the past...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12139

    authors: Larroudé S,Massei N,Reyes-Marchant P,Delattre C,Humbert JF

    更新日期:2013-05-01 00:00:00

  • Land management: data availability and process understanding for global change studies.

    abstract::In the light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced c...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.13443

    authors: Erb KH,Luyssaert S,Meyfroidt P,Pongratz J,Don A,Kloster S,Kuemmerle T,Fetzel T,Fuchs R,Herold M,Haberl H,Jones CD,Marín-Spiotta E,McCallum I,Robertson E,Seufert V,Fritz S,Valade A,Wiltshire A,Dolman AJ

    更新日期:2017-02-01 00:00:00

  • Hydrological response of biological soil crusts to global warming: A ten-year simulative study.

    abstract::Biological soil crusts across the desert regions play a key role in regional ecological security and ecological health. They are vital biotic components of desert ecosystems that maintain soil stability, fix carbon and nitrogen, influence the establishment of vascular plants, and serve as habitats for a large number o...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14378

    authors: Li XR,Jia RL,Zhang ZS,Zhang P,Hui R

    更新日期:2018-10-01 00:00:00

  • Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations.

    abstract::The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12391

    authors: Loranty MM,Berner LT,Goetz SJ,Jin Y,Randerson JT

    更新日期:2014-02-01 00:00:00

  • Student's tutorial on bloom hypotheses in the context of phytoplankton annual cycles.

    abstract::Phytoplankton blooms are elements in repeating annual cycles of phytoplankton biomass and they have significant ecological and biogeochemical consequences. Temporal changes in phytoplankton biomass are governed by complex predator-prey interactions and physically driven variations in upper water column growth conditio...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13858

    authors: Behrenfeld MJ,Boss ES

    更新日期:2018-01-01 00:00:00

  • Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada.

    abstract::Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling postfire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand ty...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14641

    authors: Day NJ,Dunfield KE,Johnstone JF,Mack MC,Turetsky MR,Walker XJ,White AL,Baltzer JL

    更新日期:2019-07-01 00:00:00

  • Annual temperature variation as a time machine to understand the effects of long-term climate change on a poleward range shift.

    abstract::Range shifts due to annual variation in temperature are more tractable than range shifts linked to decadal to century long temperature changes due to climate change, providing natural experiments to determine the mechanisms responsible for driving long-term distributional shifts. In this study we couple physiologicall...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14300

    authors: Crickenberger S,Wethey DS

    更新日期:2018-08-01 00:00:00

  • Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks.

    abstract::Most tree roots on Earth form a symbiosis with either ecto- or arbuscular mycorrhizal fungi. Nitrogen fertilization is hypothesized to favor arbuscular mycorrhizal tree species at the expense of ectomycorrhizal species due to differences in fungal nitrogen acquisition strategies, and this may alter soil carbon balance...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14368

    authors: Averill C,Dietze MC,Bhatnagar JM

    更新日期:2018-10-01 00:00:00

  • Feasting on terrestrial organic matter: Dining in a dark lake changes microbial decomposition.

    abstract::Boreal lakes are major components of the global carbon cycle, partly because of sediment-bound heterotrophic microorganisms that decompose within-lake and terrestrially derived organic matter (t-OM). The ability for sediment bacteria to break down and alter t-OM may depend on environmental characteristics and communit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14391

    authors: Fitch A,Orland C,Willer D,Emilson EJS,Tanentzap AJ

    更新日期:2018-11-01 00:00:00

  • Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes.

    abstract::One of the greatest current challenges to human society is ensuring adequate food production and security for a rapidly growing population under changing climatic conditions. Climate change, and specifically rising temperatures, will alter the suitability of areas for specific crops and cultivation systems. In order t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13959

    authors: Tito R,Vasconcelos HL,Feeley KJ

    更新日期:2018-02-01 00:00:00

  • The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance.

    abstract::Global change is affecting terrestrial carbon (C) balances. The effect of climate on ecosystem C balance has been largely explored, but the roles of other concurrently changing factors, such as diversity and nutrient availability, remain elusive. We used eddy-covariance C-flux measurements from 62 ecosystems from whic...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15385

    authors: Fernández-Martínez M,Sardans J,Musavi T,Migliavacca M,Iturrate-Garcia M,Scholes RJ,Peñuelas J,Janssens IA

    更新日期:2020-12-01 00:00:00

  • Acidification effects on biofouling communities: winners and losers.

    abstract::How ocean acidification affects marine life is a major concern for science and society. However, its impacts on encrusting biofouling communities, that are both the initial colonizers of hard substrata and of great economic importance, are almost unknown. We showed that community composition changed significantly, fro...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12841

    authors: Peck LS,Clark MS,Power D,Reis J,Batista FM,Harper EM

    更新日期:2015-05-01 00:00:00

  • Changing spring snow cover dynamics and early season forage availability affect the behavior of a large carnivore.

    abstract::Changing climates are altering wildlife habitats and wildlife behavior in complex ways. Here, we examine how changing spring snow cover dynamics and early season forage availability are altering grizzly bear (Ursus arctos) behavior postden emergence. Telemetry data were used to identify spring activity dates for 48 in...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15295

    authors: Rickbeil GJM,Coops NC,Berman EE,McClelland CJR,Bolton DK,Stenhouse GB

    更新日期:2020-07-28 00:00:00

  • Climatic changes can drive the loss of genetic diversity in a Neotropical savanna tree species.

    abstract::The high rates of future climatic changes, compared with the rates reported for past changes, may hamper species adaptation to new climates or the tracking of suitable conditions, resulting in significant loss of genetic diversity. Trees are dominant species in many biomes and because they are long-lived, they may not...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13685

    authors: Lima JS,Ballesteros-Mejia L,Lima-Ribeiro MS,Collevatti RG

    更新日期:2017-11-01 00:00:00

  • Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics.

    abstract::As the ocean warms, thermal tolerance of developmental stages may be a key driver of changes in the geographical distributions and abundance of marine invertebrates. Additional stressors such as ocean acidification may influence developmental thermal windows and are therefore important considerations for predicting di...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13452

    authors: Karelitz SE,Uthicke S,Foo SA,Barker MF,Byrne M,Pecorino D,Lamare MD

    更新日期:2017-02-01 00:00:00