The climate sensitivity of carbon, timber, and species richness covaries with forest age in boreal-temperate North America.

Abstract:

:Climate change threatens the provisioning of forest ecosystem services and biodiversity (ESB). The climate sensitivity of ESB may vary with forest development from young to old-growth conditions as structure and composition shift over time and space. This study addresses knowledge gaps hindering implementation of adaptive forest management strategies to sustain ESB. We focused on a number of ESB indicators to (a) analyze associations among carbon storage, timber growth rate, and species richness along a forest development gradient; (b) test the sensitivity of these associations to climatic changes; and (c) identify hotspots of climate sensitivity across the boreal-temperate forests of eastern North America. From pre-existing databases and literature, we compiled a unique dataset of 18,507 forest plots. We used a full Bayesian framework to quantify responses of nine ESB indicators. The Bayesian models were used to assess the sensitivity of these indicators and their associations to projected increases in temperature and precipitation. We found the strongest association among the investigated ESB indicators in old forests (>170 years). These forests simultaneously support high levels of carbon storage, timber growth, and species richness. Older forests also exhibit low climate sensitivity of associations among ESB indicators as compared to younger forests. While regions with a currently low combined ESB performance benefitted from climate change, regions with a high ESB performance were particularly vulnerable to climate change. In particular, climate sensitivity was highest east and southeast of the Great Lakes, signaling potential priority areas for adaptive management. Our findings suggest that strategies aimed at enhancing the representation of older forest conditions at landscape scales will help sustain ESB in a changing world.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Thom D,Golivets M,Edling L,Meigs GW,Gourevitch JD,Sonter LJ,Galford GL,Keeton WS

doi

10.1111/gcb.14656

subject

Has Abstract

pub_date

2019-07-01 00:00:00

pages

2446-2458

issue

7

eissn

1354-1013

issn

1365-2486

journal_volume

25

pub_type

杂志文章
  • A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations.

    abstract::The tropical peat swamp forests of South-East Asia are being rapidly converted to agricultural plantations of oil palm and Acacia creating a significant global "hot-spot" for CO2 emissions. However, the effect of this major perturbation has yet to be quantified in terms of global warming potential (GWP) and the Earth'...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14400

    authors: Dommain R,Frolking S,Jeltsch-Thömmes A,Joos F,Couwenberg J,Glaser PH

    更新日期:2018-11-01 00:00:00

  • Fish communities diverge in species but converge in traits over three decades of warming.

    abstract::Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait-based approaches can provide better insight than species-based (i.e. taxonomic) approaches into community assembly and ecosystem functio...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14785

    authors: McLean M,Mouillot D,Lindegren M,Villéger S,Engelhard G,Murgier J,Auber A

    更新日期:2019-11-01 00:00:00

  • Biodiversity scenarios neglect future land-use changes.

    abstract::Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong the...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13272

    authors: Titeux N,Henle K,Mihoub JB,Regos A,Geijzendorffer IR,Cramer W,Verburg PH,Brotons L

    更新日期:2016-07-01 00:00:00

  • Anthropogenic noise compromises antipredator behaviour in European eels.

    abstract::Increases in noise-generating human activities since the Industrial Revolution have changed the acoustic landscape of many terrestrial and aquatic ecosystems. Anthropogenic noise is now recognized as a major pollutant of international concern, and recent studies have demonstrated impacts on, for instance, hearing thre...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12685

    authors: Simpson SD,Purser J,Radford AN

    更新日期:2015-02-01 00:00:00

  • Relationships between individual-tree mortality and water-balance variables indicate positive trends in water stress-induced tree mortality across North America.

    abstract::Accounting for water stress-induced tree mortality in forest productivity models remains a challenge due to uncertainty in stress tolerance of tree populations. In this study, logistic regression models were developed to assess species-specific relationships between probability of mortality (Pm ) and drought, drawing ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13428

    authors: Hember RA,Kurz WA,Coops NC

    更新日期:2017-04-01 00:00:00

  • Continuous soil carbon storage of old permanent pastures in Amazonia.

    abstract::Amazonian forests continuously accumulate carbon (C) in biomass and in soil, representing a carbon sink of 0.42-0.65 GtC yr-1 . In recent decades, more than 15% of Amazonian forests have been converted into pastures, resulting in net C emissions (~200 tC ha-1 ) due to biomass burning and litter mineralization in the f...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13573

    authors: Stahl C,Fontaine S,Klumpp K,Picon-Cochard C,Grise MM,Dezécache C,Ponchant L,Freycon V,Blanc L,Bonal D,Burban B,Soussana JF,Blanfort V

    更新日期:2017-08-01 00:00:00

  • Combined effects of warming and nutrients on marine communities are moderated by predators and vary across functional groups.

    abstract::Warming, nutrient enrichment and biodiversity modification are among the most pervasive components of human-induced global environmental change. We know little about their cumulative effects on ecosystems; however, even though this knowledge is fundamental to predicting and managing their consequences in a changing wo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14456

    authors: White L,Donohue I,Emmerson MC,O'Connor NE

    更新日期:2018-12-01 00:00:00

  • Methane emissions from contrasting urban freshwaters: Rates, drivers, and a whole-city footprint.

    abstract::Global urbanization trends impose major alterations on surface waters. This includes impacts on ecosystem functioning that can involve feedbacks on climate through changes in rates of greenhouse gas emissions. The combination of high nutrient supply and shallow depth typical of urban freshwaters is particularly conduc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14799

    authors: Herrero Ortega S,Romero González-Quijano C,Casper P,Singer GA,Gessner MO

    更新日期:2019-12-01 00:00:00

  • Eight decades of sampling reveal a contemporary novel fish assemblage in coastal nursery habitats.

    abstract::In order to adequately monitor biodiversity trends through time and their responses to natural or anthropogenic impacts, researchers require long time series that are often unavailable. This general lack of datasets that are several decades or longer makes establishing a background or baseline of diversity metrics dif...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13047

    authors: Barceló C,Ciannelli L,Olsen EM,Johannessen T,Knutsen H

    更新日期:2016-03-01 00:00:00

  • Elevated atmospheric [CO2 ] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves.

    abstract::Wheat production will be impacted by increasing concentration of atmospheric CO2 [CO2 ], which is expected to rise from about 400 μmol mol(-1) in 2015 to 550 μmol mol(-1) by 2050. Changes to plant physiology and crop responses from elevated [CO2 ] (e[CO2 ]) are well documented for some environments, but field-level re...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13263

    authors: Fitzgerald GJ,Tausz M,O'Leary G,Mollah MR,Tausz-Posch S,Seneweera S,Mock I,Löw M,Partington DL,McNeil D,Norton RM

    更新日期:2016-06-01 00:00:00

  • On the tracks of Nitrogen deposition effects on temperate forests at their southern European range - an observational study from Italy.

    abstract::We studied forest monitoring data collected at permanent plots in Italy over the period 2000-2009 to identify the possible impact of nitrogen (N) deposition on soil chemistry, tree nutrition and growth. Average N throughfall (N-NO3 +N-NH4 ) ranged between 4 and 29 kg ha(-1)  yr(-1) , with Critical Loads (CLs) for nutr...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12552

    authors: Ferretti M,Marchetto A,Arisci S,Bussotti F,Calderisi M,Carnicelli S,Cecchini G,Fabbio G,Bertini G,Matteucci G,de Cinti B,Salvati L,Pompei E

    更新日期:2014-11-01 00:00:00

  • The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    abstract::Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitati...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13248

    authors: Fisher JP,Estop-Aragonés C,Thierry A,Charman DJ,Wolfe SA,Hartley IP,Murton JB,Williams M,Phoenix GK

    更新日期:2016-09-01 00:00:00

  • Is Antarctica under threat of alien species invasion?

    abstract::The last decade has seen a rapid development of scientific, logistic and tourist activities, especially in the Antarctic region with the mildest climatic conditions: the Antarctic Peninsula. This region is also exhibiting rapid regional warming and all of the already diagnosed alien species in the Antarctic Treaty Are...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15013

    authors: Chwedorzewska KJ,Korczak-Abshire M,Znój A

    更新日期:2020-01-24 00:00:00

  • Hydrological response of biological soil crusts to global warming: A ten-year simulative study.

    abstract::Biological soil crusts across the desert regions play a key role in regional ecological security and ecological health. They are vital biotic components of desert ecosystems that maintain soil stability, fix carbon and nitrogen, influence the establishment of vascular plants, and serve as habitats for a large number o...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14378

    authors: Li XR,Jia RL,Zhang ZS,Zhang P,Hui R

    更新日期:2018-10-01 00:00:00

  • Invited review: Intergovernmental Panel on Climate Change, agriculture, and food-A case of shifting cultivation and history.

    abstract::Since 1990, the Intergovernmental Panel on Climate Change (IPCC) has produced five Assessment Reports (ARs), in which agriculture as the production of food for humans via crops and livestock have featured in one form or another. A constructed database of the ca. 2,100 cited experiments and simulations in the five ARs ...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14700

    authors: Porter JR,Challinor AJ,Henriksen CB,Howden SM,Martre P,Smith P

    更新日期:2019-08-01 00:00:00

  • Lifeform indicators reveal large-scale shifts in plankton across the North-West European shelf.

    abstract::Increasing direct human pressures on the marine environment, coupled with climate-driven changes, is a concern to marine ecosystems globally. This requires the development and monitoring of ecosystem indicators for effective management and adaptation planning. Plankton lifeforms (broad functional groups) are sensitive...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15066

    authors: Bedford J,Ostle C,Johns DG,Atkinson A,Best M,Bresnan E,Machairopoulou M,Graves CA,Devlin M,Milligan A,Pitois S,Mellor A,Tett P,McQuatters-Gollop A

    更新日期:2020-06-01 00:00:00

  • Four decades of plant community change along a continental gradient of warming.

    abstract::Many studies of individual sites have revealed biotic changes consistent with climate warming (e.g., upward elevational distribution shifts), but our understanding of the tremendous variation among studies in the magnitude of such biotic changes is minimal. In this study, we resurveyed forest vegetation plots 40 years...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14568

    authors: Becker-Scarpitta A,Vissault S,Vellend M

    更新日期:2019-05-01 00:00:00

  • Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate.

    abstract::Global climate change is affecting carbon cycling by driving changes in primary productivity and rates of carbon fixation, release and storage within Earth's vegetated systems. There is, however, limited understanding of how carbon flow between donor and recipient habitats will respond to climatic changes. Macroalgal-...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14303

    authors: Pessarrodona A,Moore PJ,Sayer MDJ,Smale DA

    更新日期:2018-09-01 00:00:00

  • Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings.

    abstract::Simultaneously with warming climate, other climatic and environmental factors are also changing. Here, we investigated for the first time the effects of elevated temperature, increased ultraviolet-B (UVB) radiation, fertilization and all combinations of these on the growth, secondary chemistry and needle structure of ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12464

    authors: Virjamo V,Sutinen S,Julkunen-Tiitto R

    更新日期:2014-07-01 00:00:00

  • Quantifying variation in forest disturbance, and its effects on aboveground biomass dynamics, across the eastern United States.

    abstract::The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio-temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12152

    authors: Vanderwel MC,Coomes DA,Purves DW

    更新日期:2013-05-01 00:00:00

  • Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO2.

    abstract::Coccolithophores are important oceanic primary producers not only in terms of photosynthesis but also because they produce calcite plates called coccoliths. Ongoing ocean acidification associated with changing seawater carbonate chemistry may impair calcification and other metabolic functions in coccolithophores. Whil...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14065

    authors: Tong S,Gao K,Hutchins DA

    更新日期:2018-07-01 00:00:00

  • Future climate change driven sea-level rise: secondary consequences from human displacement for island biodiversity.

    abstract::Sea-level rise (SLR) due to global warming will result in the loss of many coastal areas. The direct or primary effects due to inundation and erosion from SLR are currently being assessed; however, the indirect or secondary ecological effects, such as changes caused by the displacement of human populations, have not b...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02736.x

    authors: Wetzel FT,Kissling WD,Beissmann H,Penn DJ

    更新日期:2012-09-01 00:00:00

  • Plants mediate soil organic matter decomposition in response to sea level rise.

    abstract::Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13082

    authors: Mueller P,Jensen K,Megonigal JP

    更新日期:2016-01-01 00:00:00

  • Population trends influence species ability to track climate change.

    abstract::Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species' climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13478

    authors: Ralston J,DeLuca WV,Feldman RE,King DI

    更新日期:2017-04-01 00:00:00

  • A review of global potentially available cropland estimates and their consequences for model-based assessments.

    abstract::The world's population is growing and demand for food, feed, fiber, and fuel is increasing, placing greater demand on land and its resources for crop production. We review previously published estimates of global scale cropland availability, discuss the underlying assumptions that lead to differences between estimates...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12733

    authors: Eitelberg DA,van Vliet J,Verburg PH

    更新日期:2015-03-01 00:00:00

  • Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from long-term data assimilation.

    abstract::It is critical to accurately estimate carbon (C) turnover time as it dominates the uncertainty in ecosystem C sinks and their response to future climate change. In the absence of direct observations of ecosystem C losses, C turnover times are commonly estimated under the steady state assumption (SSA), which has been a...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14547

    authors: Ge R,He H,Ren X,Zhang L,Yu G,Smallman TL,Zhou T,Yu SY,Luo Y,Xie Z,Wang S,Wang H,Zhou G,Zhang Q,Wang A,Fan Z,Zhang Y,Shen W,Yin H,Lin L

    更新日期:2019-03-01 00:00:00

  • Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species.

    abstract::Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12173

    authors: Thompson SE,Katul GG

    更新日期:2013-06-01 00:00:00

  • Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea.

    abstract::Although climate warming is affecting most marine ecosystems, the Mediterranean is showing earlier impacts. Foundation seagrasses are already experiencing a well-documented regression in the Mediterranean which could be aggravated by climate change. Here, we forecast distributions of two seagrasses and contrast predic...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14401

    authors: Chefaoui RM,Duarte CM,Serrão EA

    更新日期:2018-10-01 00:00:00

  • Native and exotic plant cover vary inversely along a climate gradient 11 years following stand-replacing wildfire in a dry coniferous forest, Oregon, USA.

    abstract::Community re-assembly following future disturbances will often occur under warmer and more moisture-limited conditions than when current communities assembled. Because the establishment stage is regularly the most sensitive to climate and competition, the trajectory of recovery from disturbance in a changing environme...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12775

    authors: Dodson EK,Root HT

    更新日期:2015-02-01 00:00:00

  • Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms.

    abstract::Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13652

    authors: Lefevre S,McKenzie DJ,Nilsson GE

    更新日期:2017-09-01 00:00:00