Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species.

Abstract:

:Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range-wide, spatially explicit climate change vulnerability assessment for Eastern Massasauga (Sistrurus catenatus), a declining endemic species in a region showing strong environmental change. Using active season and winter adult survival estimates derived from 17 data sets throughout the species' range, we identified demographic sensitivities to winter drought, maximum precipitation during the summer, and the proportion of the surrounding landscape dominated by agricultural and urban land cover. Each of these factors was negatively associated with active season adult survival rates in binomial generalized linear models. We then used these relationships to back-cast adult survival with dynamic climate variables from 1950 to 2008 using spatially explicit demographic models. Demographic models for 189 population locations predicted known extant and extirpated populations well (AUC = 0.75), and models based on climate and land cover variables were superior to models incorporating either of those effects independently. These results suggest that increasing frequencies and severities of extreme events, including drought and flooding, have been important drivers of the long-term spatiotemporal variation in a demographic rate. We provide evidence that this variation reflects nonadaptive sensitivity to climatic stressors, which are contributing to long-term demographic decline and range contraction for a species of high-conservation concern. Range-wide demographic modeling facilitated an understanding of spatial shifts in climatic suitability and exposure, allowing the identification of important climate refugia for a dispersal-limited species. Climate change vulnerability assessment provides a framework for linking demographic and distributional dynamics to environmental change, and can thereby provide unique information for conservation planning and management.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Pomara LY,LeDee OE,Martin KJ,Zuckerberg B

doi

10.1111/gcb.12510

subject

Has Abstract

pub_date

2014-07-01 00:00:00

pages

2087-99

issue

7

eissn

1354-1013

issn

1365-2486

journal_volume

20

pub_type

杂志文章
  • Broken bridges: The isolation of Kilimanjaro's ecosystem.

    abstract::Biodiversity studies of global change mainly focus on direct impacts such as losses in species numbers or ecosystem functions. In this study, we focus on the long-term effects of recent land-cover conversion and subsequent ecological isolation of Kilimanjaro on biodiversity in a paleobiogeographical context, linking o...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14078

    authors: Hemp A,Hemp C

    更新日期:2018-08-01 00:00:00

  • Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types.

    abstract::The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dy...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13487

    authors: Acácio V,Dias FS,Catry FX,Rocha M,Moreira F

    更新日期:2017-03-01 00:00:00

  • Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition.

    abstract::For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases i...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12265

    authors: Pound KL,Lawrence GB,Passy SI

    更新日期:2013-09-01 00:00:00

  • Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China.

    abstract::Treeline responses to environmental changes describe an important phenomenon in global change research. Often conflicting results and generally too short observations are, however, still challenging our understanding of climate-induced treeline dynamics. Here, we use a state-of-the-art dendroecological approach to rec...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13963

    authors: Du H,Liu J,Li MH,Büntgen U,Yang Y,Wang L,Wu Z,He HS

    更新日期:2018-03-01 00:00:00

  • Application of a two-pool model to soil carbon dynamics under elevated CO2.

    abstract::Elevated atmospheric CO2 concentrations increase plant productivity and affect soil microbial communities, with possible consequences for the turnover rate of soil carbon (C) pools and feedbacks to the atmosphere. In a previous analysis (Van Groenigen et al., 2014), we used experimental data to inform a one-pool model...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13074

    authors: van Groenigen KJ,Xia J,Osenberg CW,Luo Y,Hungate BA

    更新日期:2015-12-01 00:00:00

  • Thermal affinity as the dominant factor changing Mediterranean fish abundances.

    abstract::Recent decades have seen profound changes in species abundance and community composition. In the marine environment, the major anthropogenic drivers of change comprise exploitation, invasion by nonindigenous species, and climate change. However, the magnitude of these stressors has been widely debated and we lack empi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13835

    authors: Givan O,Edelist D,Sonin O,Belmaker J

    更新日期:2018-01-01 00:00:00

  • Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO(2) against measurements from an 11-year FACE experiment on grazed pasture.

    abstract::Ecosystem models play a crucial role in understanding and evaluating the combined impacts of rising atmospheric CO2 concentration and changing climate on terrestrial ecosystems. However, we are not aware of any studies where the capacity of models to simulate intra- and inter-annual variation in responses to elevated ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12358

    authors: Li FY,Newton PC,Lieffering M

    更新日期:2014-01-01 00:00:00

  • Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities.

    abstract::Many arctic ecological processes are regulated by soil temperature that is tightly interconnected with snow cover distribution and persistence. Recently, various climate-induced changes have been observed in arctic tundra ecosystems, e.g. shrub expansion, resulting in reduction in albedo and greater C fixation in abov...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13294

    authors: Morgado LN,Semenova TA,Welker JM,Walker MD,Smets E,Geml J

    更新日期:2016-09-01 00:00:00

  • Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database.

    abstract::Enteric methane (CH4 ) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH4 is complex, expensive, and impractical at large scales; therefore, models are commonly used to predict CH4 production. However, building robust prediction models requires extensive data from animals...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14094

    authors: Niu M,Kebreab E,Hristov AN,Oh J,Arndt C,Bannink A,Bayat AR,Brito AF,Boland T,Casper D,Crompton LA,Dijkstra J,Eugène MA,Garnsworthy PC,Haque MN,Hellwing ALF,Huhtanen P,Kreuzer M,Kuhla B,Lund P,Madsen J,Martin C,

    更新日期:2018-08-01 00:00:00

  • Incorporating climate change adaptation into marine protected area planning.

    abstract::Climate change is increasingly impacting marine protected areas (MPAs) and MPA networks, yet adaptation strategies are rarely incorporated into MPA design and management plans according to the primary scientific literature. Here we review the state of knowledge for adapting existing and future MPAs to climate change a...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.15094

    authors: Wilson KL,Tittensor DP,Worm B,Lotze HK

    更新日期:2020-06-01 00:00:00

  • Divergent trends in the risk of spring frost damage to trees in Europe with recent warming.

    abstract::Frost events during the active growth period of plants can cause extensive frost damage with tremendous economic losses and dramatic ecological consequences. A common assumption is that climate warming may bring along a reduction in the frequency and severity of frost damage to vegetation. On the other hand, it has be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14479

    authors: Ma Q,Huang JG,Hänninen H,Berninger F

    更新日期:2019-01-01 00:00:00

  • Land-sparing agriculture sustains higher levels of avian functional diversity than land sharing.

    abstract::The ecological impacts of meeting rising demands for food production can potentially be mitigated by two competing land-use strategies: off-setting natural habitats through intensification of existing farmland (land sparing), or elevating biodiversity within the agricultural matrix via the integration of "wildlife-fri...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14601

    authors: Cannon PG,Gilroy JJ,Tobias JA,Anderson A,Haugaasen T,Edwards DP

    更新日期:2019-05-01 00:00:00

  • Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts.

    abstract::Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological a...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12916

    authors: Frank D,Reichstein M,Bahn M,Thonicke K,Frank D,Mahecha MD,Smith P,van der Velde M,Vicca S,Babst F,Beer C,Buchmann N,Canadell JG,Ciais P,Cramer W,Ibrom A,Miglietta F,Poulter B,Rammig A,Seneviratne SI,Walz A,Watte

    更新日期:2015-08-01 00:00:00

  • Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes.

    abstract::Changes in peak photosynthesis timing (PPT) could substantially change the seasonality of the terrestrial carbon cycle. Spring PPT in dry regions has been documented for some individual plant species on a stand scale, but both the spatio-temporal pattern of shifting PPT on a continental scale and its determinants rema...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13224

    authors: Xu C,Liu H,Williams AP,Yin Y,Wu X

    更新日期:2016-08-01 00:00:00

  • Will coral reef sponges be winners in the Anthropocene?

    abstract::Recent observations have shown that increases in climate change-related coral mortality cause changes in shallow coral reef community structure through phase shifts to alternative taxa. As a result, sponges have emerged as a potential candidate taxon to become a "winner," and therefore a numerically and functionally d...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15039

    authors: Lesser MP,Slattery M

    更新日期:2020-06-01 00:00:00

  • Microclimatic challenges in global change biology.

    abstract::Despite decades of work on climate change biology, the scientific community remains uncertain about where and when most species distributions will respond to altered climates. A major barrier is the spatial mismatch between the size of organisms and the scale at which climate data are collected and modeled. Using a me...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12257

    authors: Potter KA,Arthur Woods H,Pincebourde S

    更新日期:2013-10-01 00:00:00

  • Tropical cyclone cooling combats region-wide coral bleaching.

    abstract::Coral bleaching has become more frequent and widespread as a result of rising sea surface temperature (SST). During a regional scale SST anomaly, reef exposure to thermal stress is patchy in part due to physical factors that reduce SST to provide thermal refuge. Tropical cyclones (TCs - hurricanes, typhoons) can induc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12541

    authors: Carrigan AD,Puotinen M

    更新日期:2014-05-01 00:00:00

  • Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.

    abstract::Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento-San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that ar...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12745

    authors: Knox SH,Sturtevant C,Matthes JH,Koteen L,Verfaillie J,Baldocchi D

    更新日期:2015-02-01 00:00:00

  • Warming and drought reduce temperature sensitivity of nitrogen transformations.

    abstract::Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12063

    authors: Novem Auyeung DS,Suseela V,Dukes JS

    更新日期:2013-02-01 00:00:00

  • Anthropogenic noise compromises antipredator behaviour in European eels.

    abstract::Increases in noise-generating human activities since the Industrial Revolution have changed the acoustic landscape of many terrestrial and aquatic ecosystems. Anthropogenic noise is now recognized as a major pollutant of international concern, and recent studies have demonstrated impacts on, for instance, hearing thre...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12685

    authors: Simpson SD,Purser J,Radford AN

    更新日期:2015-02-01 00:00:00

  • Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material.

    abstract::The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12342

    authors: Erhagen B,Öquist M,Sparrman T,Haei M,Ilstedt U,Hedenström M,Schleucher J,Nilsson MB

    更新日期:2013-12-01 00:00:00

  • Ecosystem size structure response to 21st century climate projection: large fish abundance decreases in the central North Pacific and increases in the California Current.

    abstract::Output from an earth system model is paired with a size-based food web model to investigate the effects of climate change on the abundance of large fish over the 21st century. The earth system model, forced by the Intergovernmental Panel on Climate Change (IPCC) Special report on emission scenario A2, combines a coupl...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12076

    authors: Woodworth-Jefcoats PA,Polovina JJ,Dunne JP,Blanchard JL

    更新日期:2013-03-01 00:00:00

  • Warming alters coupled carbon and nutrient cycles in experimental streams.

    abstract::Although much effort has been devoted to quantifying how warming alters carbon cycling across diverse ecosystems, less is known about how these changes are linked to the cycling of bioavailable nitrogen and phosphorus. In freshwater ecosystems, benthic biofilms (i.e. thin films of algae, bacteria, fungi, and detrital ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13205

    authors: Williamson TJ,Cross WF,Benstead JP,Gíslason GM,Hood JM,Huryn AD,Johnson PW,Welter JR

    更新日期:2016-06-01 00:00:00

  • Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose-response data.

    abstract::The rising trend in concentrations of ground-level ozone (O3 ) - a common air pollutant and phytotoxin - currently being experienced in some world regions represents a threat to agricultural yield. Soybean (Glycine max (L.) Merr.) is an O3 -sensitive crop species and is experiencing increasing global demand as a dieta...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13318

    authors: Osborne SA,Mills G,Hayes F,Ainsworth EA,Büker P,Emberson L

    更新日期:2016-09-01 00:00:00

  • Points of view matter when assessing biodiversity vulnerability to environmental changes.

    abstract::We can expect different levels of vulnerability depending on the paradigm used to determine the mechanisms that will alter biodiversity under climate change. A multi-paradigm perspective is necessary to get the full picture of biodiversity vulnerability. This is a commentary on Kling et al., 26, 2798-2813. ...

    journal_title:Global change biology

    pub_type: 评论,杂志文章

    doi:10.1111/gcb.15054

    authors: Ordonez A

    更新日期:2020-05-01 00:00:00

  • "Got rats?" Global environmental costs of thirst for milk include acute biodiversity impacts linked to dairy feed production.

    abstract::Rodents damaging alfalfa crops typically destined for export to booming Eastern markets often cause economical losses to farmers, but management interventions attempting to control rodents (i.e., use of rodenticides) are themselves damaging to biodiversity. These damages resonate beyond dairy feed producing regions th...

    journal_title:Global change biology

    pub_type: 信件

    doi:10.1111/gcb.14170

    authors: Luque-Larena JJ,Mougeot F,Arroyo B,Lambin X

    更新日期:2018-07-01 00:00:00

  • Human pressures predict species' geographic range size better than biological traits.

    abstract::Geographic range size is the manifestation of complex interactions between intrinsic species traits and extrinsic environmental conditions. It is also a fundamental ecological attribute of species and a key extinction risk correlate. Past research has primarily focused on the role of biological and environmental predi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12834

    authors: Di Marco M,Santini L

    更新日期:2015-06-01 00:00:00

  • Evapotranspiration and water yield of a pine-broadleaf forest are not altered by long-term atmospheric [CO2 ] enrichment under native or enhanced soil fertility.

    abstract::Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosy...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14363

    authors: Ward EJ,Oren R,Seok Kim H,Kim D,Tor-Ngern P,Ewers BE,McCarthy HR,Oishi AC,Pataki DE,Palmroth S,Phillips NG,Schäfer KVR

    更新日期:2018-10-01 00:00:00

  • Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests.

    abstract::Secondary forests (SFs) regenerating on previously deforested land account for large, expanding areas of tropical forest cover. Given that tropical forests rank among Earth's most important reservoirs of carbon and biodiversity, SFs play an increasingly pivotal role in the carbon cycle and as potential habitat for for...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14443

    authors: Lennox GD,Gardner TA,Thomson JR,Ferreira J,Berenguer E,Lees AC,Mac Nally R,Aragão LEOC,Ferraz SFB,Louzada J,Moura NG,Oliveira VHF,Pardini R,Solar RRC,Vaz-de Mello FZ,Vieira ICG,Barlow J

    更新日期:2018-12-01 00:00:00

  • Modeling optimal responses and fitness consequences in a changing Arctic.

    abstract::Animals must balance a series of costs and benefits while trying to maximize their fitness. For example, an individual may need to choose how much energy to allocate to reproduction versus growth, or how much time to spend on vigilance versus foraging. Their decisions depend on complex interactions between environment...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14681

    authors: Reimer JR,Mangel M,Derocher AE,Lewis MA

    更新日期:2019-10-01 00:00:00