Multiscale climate change impacts on plant diversity in the Atacama Desert.

Abstract:

:Comprehending ecological dynamics requires not only knowledge of modern communities but also detailed reconstructions of ecosystem history. Ancient DNA (aDNA) metabarcoding allows biodiversity responses to major climatic change to be explored at different spatial and temporal scales. We extracted aDNA preserved in fossil rodent middens to reconstruct late Quaternary vegetation dynamics in the hyperarid Atacama Desert. By comparing our paleo-informed millennial record with contemporary observations of interannual variations in diversity, we show local plant communities behave differentially at different timescales. In the interannual (years to decades) time frame, only annual herbaceous expand and contract their distributional ranges (emerging from persistent seed banks) in response to precipitation, whereas perennials distribution appears to be extraordinarily resilient. In contrast, at longer timescales (thousands of years) many perennial species were displaced up to 1,000 m downslope during pluvial events. Given ongoing and future natural and anthropogenically induced climate change, our results not only provide baselines for vegetation in the Atacama Desert, but also help to inform how these and other high mountain plant communities may respond to fluctuations of climate in the future.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Díaz FP,Latorre C,Carrasco-Puga G,Wood JR,Wilmshurst JM,Soto DC,Cole TL,Gutiérrez RA

doi

10.1111/gcb.14583

subject

Has Abstract

pub_date

2019-05-01 00:00:00

pages

1733-1745

issue

5

eissn

1354-1013

issn

1365-2486

journal_volume

25

pub_type

杂志文章
  • Ecosystem size structure response to 21st century climate projection: large fish abundance decreases in the central North Pacific and increases in the California Current.

    abstract::Output from an earth system model is paired with a size-based food web model to investigate the effects of climate change on the abundance of large fish over the 21st century. The earth system model, forced by the Intergovernmental Panel on Climate Change (IPCC) Special report on emission scenario A2, combines a coupl...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12076

    authors: Woodworth-Jefcoats PA,Polovina JJ,Dunne JP,Blanchard JL

    更新日期:2013-03-01 00:00:00

  • Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community.

    abstract::Summer temperature on the Cape Churchill Peninsula (Manitoba, Canada) has increased rapidly over the past 75 years, and flowering phenology of the plant community is advanced in years with warmer temperatures (higher cumulative growing degree days). Despite this, there has been no overall shift in flowering phenology ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13386

    authors: Mulder CP,Iles DT,Rockwell RF

    更新日期:2017-02-01 00:00:00

  • On the tracks of Nitrogen deposition effects on temperate forests at their southern European range - an observational study from Italy.

    abstract::We studied forest monitoring data collected at permanent plots in Italy over the period 2000-2009 to identify the possible impact of nitrogen (N) deposition on soil chemistry, tree nutrition and growth. Average N throughfall (N-NO3 +N-NH4 ) ranged between 4 and 29 kg ha(-1)  yr(-1) , with Critical Loads (CLs) for nutr...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12552

    authors: Ferretti M,Marchetto A,Arisci S,Bussotti F,Calderisi M,Carnicelli S,Cecchini G,Fabbio G,Bertini G,Matteucci G,de Cinti B,Salvati L,Pompei E

    更新日期:2014-11-01 00:00:00

  • Carbon emissions from South-East Asian peatlands will increase despite emission-reduction schemes.

    abstract::Carbon emissions from drained peatlands converted to agriculture in South-East Asia (i.e., Peninsular Malaysia, Sumatra and Borneo) are globally significant and increasing. Here, we map the growth of South-East Asian peatland agriculture and estimate CO2 emissions due to peat drainage in relation to official land-use ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14340

    authors: Wijedasa LS,Sloan S,Page SE,Clements GR,Lupascu M,Evans TA

    更新日期:2018-10-01 00:00:00

  • Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus).

    abstract::The European spruce bark beetle Ips typographus is the most important insect pest in Central European forests. Under climate change, its phenology is presumed to be changing and mass infestations becoming more likely. While several studies have investigated climate effects across a latitudinal gradient, it remains an ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14766

    authors: Jakoby O,Lischke H,Wermelinger B

    更新日期:2019-12-01 00:00:00

  • Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms.

    abstract::Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13652

    authors: Lefevre S,McKenzie DJ,Nilsson GE

    更新日期:2017-09-01 00:00:00

  • Hydrological response of biological soil crusts to global warming: A ten-year simulative study.

    abstract::Biological soil crusts across the desert regions play a key role in regional ecological security and ecological health. They are vital biotic components of desert ecosystems that maintain soil stability, fix carbon and nitrogen, influence the establishment of vascular plants, and serve as habitats for a large number o...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14378

    authors: Li XR,Jia RL,Zhang ZS,Zhang P,Hui R

    更新日期:2018-10-01 00:00:00

  • Climate change impact and adaptation for wheat protein.

    abstract::Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32-multi-model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14481

    authors: Asseng S,Martre P,Maiorano A,Rötter RP,O'Leary GJ,Fitzgerald GJ,Girousse C,Motzo R,Giunta F,Babar MA,Reynolds MP,Kheir AMS,Thorburn PJ,Waha K,Ruane AC,Aggarwal PK,Ahmed M,Balkovič J,Basso B,Biernath C,Bindi M,Ca

    更新日期:2019-01-01 00:00:00

  • Finding middle ground: Extending conservation beyond wilderness areas.

    abstract::We show that because of methodological improvements, the human modification map detects higher levels of land modification and is more accurate than the human footprint map across the gradient of modification globally. While we agree that protecting the world's least modified lands or wildlands is essential for conser...

    journal_title:Global change biology

    pub_type: 评论,信件

    doi:10.1111/gcb.14900

    authors: Kennedy CM,Oakleaf JR,Baruch-Mordo S,Theobald DM,Kiesecker J

    更新日期:2020-02-01 00:00:00

  • Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species.

    abstract::Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range-wide, spatially...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12510

    authors: Pomara LY,LeDee OE,Martin KJ,Zuckerberg B

    更新日期:2014-07-01 00:00:00

  • Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.

    abstract::Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12598

    authors: Crase B,Liedloff A,Vesk PA,Fukuda Y,Wintle BA

    更新日期:2014-08-01 00:00:00

  • Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks.

    abstract::Most tree roots on Earth form a symbiosis with either ecto- or arbuscular mycorrhizal fungi. Nitrogen fertilization is hypothesized to favor arbuscular mycorrhizal tree species at the expense of ectomycorrhizal species due to differences in fungal nitrogen acquisition strategies, and this may alter soil carbon balance...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14368

    authors: Averill C,Dietze MC,Bhatnagar JM

    更新日期:2018-10-01 00:00:00

  • Reproduction and seedling establishment of Picea glauca across the northernmost forest-tundra region in Canada.

    abstract::The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02769.x

    authors: Walker X,Henry GHR,McLeod K,Hofgaard A

    更新日期:2012-10-01 00:00:00

  • Annual plants change in size over a century of observations.

    abstract::Studies have documented changes in animal body sizes over the last century, but very little is known about changes in plant sizes, even though reduced plant productivity is potentially responsible for declines in size of other organisms. Here, I ask whether warming trends in the Great Basin have affected plant size by...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12208

    authors: Leger EA

    更新日期:2013-07-01 00:00:00

  • Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures.

    abstract::Equatorial populations of marine species are predicted to be most impacted by global warming because they could be adapted to a narrow range of temperatures in their local environment. We investigated the thermal range at which aerobic metabolic performance is optimum in equatorial populations of coral reef fish in no...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12455

    authors: Rummer JL,Couturier CS,Stecyk JA,Gardiner NM,Kinch JP,Nilsson GE,Munday PL

    更新日期:2014-04-01 00:00:00

  • The role of ungulates in nowadays temperate forests. A response to Fløjgaard et al. (DOI:10.1111/gcb.14029).

    abstract::In Boulanger et al. (2018), we investigated the effects of ungulates on forest plant diversity. By suggesting a revisit of our conclusions regarding ecosystem dynamics since the late Pleistocene, Fløjgaard et al. (2018) came to the conclusion that moderate grazing in forest should be a conservation target. Since major...

    journal_title:Global change biology

    pub_type: 评论,信件

    doi:10.1111/gcb.14122

    authors: Boulanger V,Dupouey JL,Archaux F,Badeau V,Baltzinger C,Chevalier R,Corcket E,Dumas Y,Forgeard F,Mårell A,Montpied P,Paillet Y,Saïd S,Ulrich E

    更新日期:2018-06-01 00:00:00

  • The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance.

    abstract::Global change is affecting terrestrial carbon (C) balances. The effect of climate on ecosystem C balance has been largely explored, but the roles of other concurrently changing factors, such as diversity and nutrient availability, remain elusive. We used eddy-covariance C-flux measurements from 62 ecosystems from whic...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15385

    authors: Fernández-Martínez M,Sardans J,Musavi T,Migliavacca M,Iturrate-Garcia M,Scholes RJ,Peñuelas J,Janssens IA

    更新日期:2020-12-01 00:00:00

  • Upslope development of a tidal marsh as a function of upland land use.

    abstract::To thrive in a time of rapid sea-level rise, tidal marshes will need to migrate upslope into adjacent uplands. Yet little is known about the mechanics of this process, especially in urbanized estuaries, where the adjacent upland is likely to be a mowed lawn rather than a wooded natural area. We studied marsh migration...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13398

    authors: Anisfeld SC,Cooper KR,Kemp AC

    更新日期:2017-02-01 00:00:00

  • Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    abstract::Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13633

    authors: Dalcin Martins P,Hoyt DW,Bansal S,Mills CT,Tfaily M,Tangen BA,Finocchiaro RG,Johnston MD,McAdams BC,Solensky MJ,Smith GJ,Chin YP,Wilkins MJ

    更新日期:2017-08-01 00:00:00

  • Global environmental costs of China's thirst for milk.

    abstract::China has an ever-increasing thirst for milk, with a predicted 3.2-fold increase in demand by 2050 compared to the production level in 2010. What are the environmental implications of meeting this demand, and what is the preferred pathway? We addressed these questions by using a nexus approach, to examine the interdep...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14047

    authors: Bai Z,Lee MRF,Ma L,Ledgard S,Oenema O,Velthof GL,Ma W,Guo M,Zhao Z,Wei S,Li S,Liu X,Havlík P,Luo J,Hu C,Zhang F

    更新日期:2018-05-01 00:00:00

  • Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs.

    abstract::Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13875

    authors: Arimitsu ML,Hobson KA,Webber DN,Piatt JF,Hood EW,Fellman JB

    更新日期:2018-01-01 00:00:00

  • Miami heat: Urban heat islands influence the thermal suitability of habitats for ectotherms.

    abstract::The urban heat island effect, where urban areas exhibit higher temperatures than less-developed suburban and natural habitats, occurs in cities across the globe and is well understood from a physical perspective and at broad spatial scales. However, very little is known about how thermal variation caused by urbanizati...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14509

    authors: Battles AC,Kolbe JJ

    更新日期:2019-02-01 00:00:00

  • Effects of climate warming on carbon fluxes in grasslands- A global meta-analysis.

    abstract::Climate warming will affect terrestrial ecosystems in many ways, and warming-induced changes in terrestrial carbon (C) cycling could accelerate or slow future warming. So far, warming experiments have shown a wide range of C flux responses, across and within biome types. However, past meta-analyses of C flux responses...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14603

    authors: Wang N,Quesada B,Xia L,Butterbach-Bahl K,Goodale CL,Kiese R

    更新日期:2019-05-01 00:00:00

  • Application of a two-pool model to soil carbon dynamics under elevated CO2.

    abstract::Elevated atmospheric CO2 concentrations increase plant productivity and affect soil microbial communities, with possible consequences for the turnover rate of soil carbon (C) pools and feedbacks to the atmosphere. In a previous analysis (Van Groenigen et al., 2014), we used experimental data to inform a one-pool model...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13074

    authors: van Groenigen KJ,Xia J,Osenberg CW,Luo Y,Hungate BA

    更新日期:2015-12-01 00:00:00

  • Precipitation-drainage cycles lead to hot moments in soil carbon dioxide dynamics in a Neotropical wet forest.

    abstract::Soil CO2 concentrations and emissions from tropical forests are modulated seasonally by precipitation. However, subseasonal responses to meteorological events (e.g., storms, drought) are less well known. Here, we present the effects of meteorological variability on short-term (hours to months) dynamics of soil CO2 con...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15194

    authors: Fernandez-Bou AS,Dierick D,Allen MF,Harmon TC

    更新日期:2020-09-01 00:00:00

  • From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach.

    abstract::Maps of continental-scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time-scales. User groups with an interest in past land cover include the clim...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12776

    authors: Fyfe RM,Woodbridge J,Roberts N

    更新日期:2015-03-01 00:00:00

  • Continuous soil carbon storage of old permanent pastures in Amazonia.

    abstract::Amazonian forests continuously accumulate carbon (C) in biomass and in soil, representing a carbon sink of 0.42-0.65 GtC yr-1 . In recent decades, more than 15% of Amazonian forests have been converted into pastures, resulting in net C emissions (~200 tC ha-1 ) due to biomass burning and litter mineralization in the f...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13573

    authors: Stahl C,Fontaine S,Klumpp K,Picon-Cochard C,Grise MM,Dezécache C,Ponchant L,Freycon V,Blanc L,Bonal D,Burban B,Soussana JF,Blanfort V

    更新日期:2017-08-01 00:00:00

  • Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

    abstract::With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12482

    authors: Gilroy JJ,Woodcock P,Edwards FA,Wheeler C,Medina Uribe CA,Haugaasen T,Edwards DP

    更新日期:2014-07-01 00:00:00

  • The influence of historical climate changes on Southern Ocean marine predator populations: a comparative analysis.

    abstract::The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher-order predators. Here, we compare the long-term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundanc...

    journal_title:Global change biology

    pub_type: 历史文章,杂志文章,评审

    doi:10.1111/gcb.13104

    authors: Younger JL,Emmerson LM,Miller KJ

    更新日期:2016-02-01 00:00:00

  • Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China.

    abstract::Controlled experiments have shown that global changes decouple the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in shifting stoichiometry that lies at the core of ecosystem functioning. However, the response of soil stoichiometry to global changes in natural ecosystems with differen...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13939

    authors: Yu Z,Wang M,Huang Z,Lin TC,Vadeboncoeur MA,Searle EB,Chen HYH

    更新日期:2018-03-01 00:00:00