Reproduction and seedling establishment of Picea glauca across the northernmost forest-tundra region in Canada.

Abstract:

:The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the current Low Arctic. Central to the prediction of forest expansion is an increase in the reproductive capacity and establishment of individual trees. We assessed cone production, seed viability, and transplanted seedling success of Picea glauca (Moench.) Voss. (white spruce) in the early 1990s and again in the late 2000s at four forest stand sites and eight tree island sites (clonal populations beyond present treeline) in the Mackenzie Delta region of the Northwest Territories, Canada. Over the past 20 years, average temperatures in this region have increased by 0.9 °C. This area has the northernmost forest-tundra ecotone in North America and is one of the few circumpolar regions where the northern limit of conifer trees reaches the Arctic Ocean. We found that cone production and seed viability did not change between the two periods of examination and that both variables decreased northward across the forest-tundra ecotone. Nevertheless, white spruce individuals at the northern limit of the forest-tundra ecotone produced viable seeds. Furthermore, transplanted seedlings were able to survive in the northernmost sites for 15 years, but there were no signs of natural regeneration. These results indicate that if climatic conditions continue to ameliorate, reproductive output will likely increase, but seedling establishment and forest expansion within the forest-tundra of this region is unlikely to occur without the availability of suitable recruitment sites. Processes that affect the availability of recruitment sites are likely to be important elsewhere in the circumpolar ecotone, and should be incorporated into models and predictions of climate change and its effects on the northern forest-tundra ecotone.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Walker X,Henry GHR,McLeod K,Hofgaard A

doi

10.1111/j.1365-2486.2012.02769.x

subject

Has Abstract

pub_date

2012-10-01 00:00:00

pages

3202-3211

issue

10

eissn

1354-1013

issn

1365-2486

journal_volume

18

pub_type

杂志文章
  • Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea.

    abstract::As the Earth's temperature continues to rise, coral bleaching events become more frequent. Some of the most affected reef ecosystems are located in poorly monitored waters, and thus, the extent of the damage is unknown. We propose the use of marine heatwaves (MHWs) as a new approach for detecting coral reef zones susc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14652

    authors: Genevier LGC,Jamil T,Raitsos DE,Krokos G,Hoteit I

    更新日期:2019-07-01 00:00:00

  • Current and projected global distribution of Phytophthora cinnamomi, one of the world's worst plant pathogens.

    abstract::Globally, Phytophthora cinnamomi is listed as one of the 100 worst invasive alien species and active management is required to reduce impact and prevent spread in both horticulture and natural ecosystems. Conversely, there are regions thought to be suitable for the pathogen where no disease is observed. We developed a...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13492

    authors: Burgess TI,Scott JK,Mcdougall KL,Stukely MJ,Crane C,Dunstan WA,Brigg F,Andjic V,White D,Rudman T,Arentz F,Ota N,Hardy GE

    更新日期:2017-04-01 00:00:00

  • Soil organic matter quality influences mineralization and GHG emissions in cryosols: a field-based study of sub- to high Arctic.

    abstract::Arctic soils store large amounts of labile soil organic matter (SOM) and several studies have suggested that SOM characteristics may explain variations in SOM cycling rates across Arctic landscapes and Arctic ecosystems. The objective of this study was to investigate the influence of routinely measured soil properties...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12125

    authors: Paré MC,Bedard-Haughn A

    更新日期:2013-04-01 00:00:00

  • Lessons from two high CO2 worlds - future oceans and intensive aquaculture.

    abstract::Exponentially rising CO2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO2 directly affects acid-base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13515

    authors: Ellis RP,Urbina MA,Wilson RW

    更新日期:2017-06-01 00:00:00

  • Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.

    abstract::Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature-induced drought stress. However, variations in tree growth alone do not revea...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12893

    authors: Walker XJ,Mack MC,Johnstone JF

    更新日期:2015-08-01 00:00:00

  • Impacts of climate and land use on N2 O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania.

    abstract::In this study, we quantify the impacts of climate and land use on soil N2 O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land-use gradients at Mt. Kilimanjaro, combining long-...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13944

    authors: Gütlein A,Gerschlauer F,Kikoti I,Kiese R

    更新日期:2018-03-01 00:00:00

  • Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.

    abstract::Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12598

    authors: Crase B,Liedloff A,Vesk PA,Fukuda Y,Wintle BA

    更新日期:2014-08-01 00:00:00

  • Gender specific patterns of carbon uptake and water use in a dominant riparian tree species exposed to a warming climate.

    abstract::Air temperatures in the arid western United States are predicted to increase over the next century. These increases will likely impact the distribution of plant species, particularly dioecious species that show a spatial segregation of the sexes across broad resource gradients. On the basis of spatial segregation patt...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12230

    authors: Hultine KR,Burtch KG,Ehleringer JR

    更新日期:2013-11-01 00:00:00

  • Land-sparing agriculture sustains higher levels of avian functional diversity than land sharing.

    abstract::The ecological impacts of meeting rising demands for food production can potentially be mitigated by two competing land-use strategies: off-setting natural habitats through intensification of existing farmland (land sparing), or elevating biodiversity within the agricultural matrix via the integration of "wildlife-fri...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14601

    authors: Cannon PG,Gilroy JJ,Tobias JA,Anderson A,Haugaasen T,Edwards DP

    更新日期:2019-05-01 00:00:00

  • Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale.

    abstract::Pollinators provide crucial ecosystem services that underpin to wild plant reproduction and yields of insect-pollinated crops. Understanding the relative impacts of anthropogenic pressures and climate on the structure of plant-pollinator interaction networks is vital considering ongoing global change and pollinator de...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15474

    authors: Doré M,Fontaine C,Thébault E

    更新日期:2020-12-03 00:00:00

  • Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model.

    abstract::Mesophyll conductance (gm ) is known to affect plant photosynthesis. However, gm is rarely explicitly considered in land surface models (LSMs), with the consequence that its role in ecosystem and large-scale carbon and water fluxes is poorly understood. In particular, the different magnitudes of gm across plant functi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14604

    authors: Knauer J,Zaehle S,De Kauwe MG,Bahar NHA,Evans JR,Medlyn BE,Reichstein M,Werner C

    更新日期:2019-05-01 00:00:00

  • Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems.

    abstract::Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters infl...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.13059

    authors: Cloern JE,Abreu PC,Carstensen J,Chauvaud L,Elmgren R,Grall J,Greening H,Johansson JO,Kahru M,Sherwood ET,Xu J,Yin K

    更新日期:2016-02-01 00:00:00

  • Ecological niche modeling of coastal dune plants and future potential distribution in response to climate change and sea level rise.

    abstract::Climate change (CC) and sea level rise (SLR) are phenomena that could have severe impacts on the distribution of coastal dune vegetation. To explore this we modeled the climatic niches of six coastal dunes plant species that grow along the shoreline of the Gulf of Mexico and the Yucatan Peninsula, and projected climat...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12236

    authors: Mendoza-González G,Martínez ML,Rojas-Soto OR,Vázquez G,Gallego-Fernández JB

    更新日期:2013-08-01 00:00:00

  • Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change.

    abstract::Current knowledge of phenological shifts in Palearctic bird migration is largely based on data collected on migrants at their breeding grounds; little is known about the phenology of these birds at their nonbreeding grounds, and even less about that of intra-African migrants. Because climate change patterns are not un...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12857

    authors: Bussière EM,Underhill LG,Altwegg R

    更新日期:2015-06-01 00:00:00

  • Vegetation cover-another dominant factor in determining global water resources in forested regions.

    abstract::Forested catchments provide critically important water resources. Due to dramatic global forest change over the past decades, the importance of including forest or vegetation change in the assessment of water resources under climate change has been highly recognized by Intergovernmental Panel on Climate Change (IPCC);...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13983

    authors: Wei X,Li Q,Zhang M,Giles-Hansen K,Liu W,Fan H,Wang Y,Zhou G,Piao S,Liu S

    更新日期:2018-02-01 00:00:00

  • Do invasive alien plants benefit more from global environmental change than native plants?

    abstract::Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in resp...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.13579

    authors: Liu Y,Oduor AMO,Zhang Z,Manea A,Tooth IM,Leishman MR,Xu X,van Kleunen M

    更新日期:2017-08-01 00:00:00

  • Moisture-induced greening of the South Asia over the past three decades.

    abstract::South Asia experienced a weakening of summer monsoon circulation in the past several decades, resulting in rainfall decline in wet regions. In comparison with other tropical ecosystems, quantitative assessments of the extent and triggers of vegetation change are lacking in assessing climate-change impacts over South A...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13762

    authors: Wang X,Wang T,Liu D,Guo H,Huang H,Zhao Y

    更新日期:2017-11-01 00:00:00

  • Coralline algal skeletal mineralogy affects grazer impacts.

    abstract::In macroalgal-dominated systems, herbivory is a major driver in controlling ecosystem structure. However, the role of altered plant-herbivore interactions and effects of changes to trophic control under global change are poorly understood. This is because both macroalgae and grazers themselves may be affected by globa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14370

    authors: McCoy SJ,Kamenos NA

    更新日期:2018-10-01 00:00:00

  • The effects of elevated CO2 and eutrophication on surface elevation gain in a European salt marsh.

    abstract::Salt marshes can play a vital role in mitigating the effects of global environmental change by dissipating incident storm wave energy and, through accretion, tracking increasing water depths consequent upon sea level rise. Atmospheric CO2 concentrations and nutrient availability are two key variables that can affect t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13396

    authors: Reef R,Spencer T,Mӧller I,Lovelock CE,Christie EK,McIvor AL,Evans BR,Tempest JA

    更新日期:2017-02-01 00:00:00

  • Annual temperature variation as a time machine to understand the effects of long-term climate change on a poleward range shift.

    abstract::Range shifts due to annual variation in temperature are more tractable than range shifts linked to decadal to century long temperature changes due to climate change, providing natural experiments to determine the mechanisms responsible for driving long-term distributional shifts. In this study we couple physiologicall...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14300

    authors: Crickenberger S,Wethey DS

    更新日期:2018-08-01 00:00:00

  • Methane emissions from contrasting urban freshwaters: Rates, drivers, and a whole-city footprint.

    abstract::Global urbanization trends impose major alterations on surface waters. This includes impacts on ecosystem functioning that can involve feedbacks on climate through changes in rates of greenhouse gas emissions. The combination of high nutrient supply and shallow depth typical of urban freshwaters is particularly conduc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14799

    authors: Herrero Ortega S,Romero González-Quijano C,Casper P,Singer GA,Gessner MO

    更新日期:2019-12-01 00:00:00

  • Biodiversity scenarios neglect future land-use changes.

    abstract::Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong the...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13272

    authors: Titeux N,Henle K,Mihoub JB,Regos A,Geijzendorffer IR,Cramer W,Verburg PH,Brotons L

    更新日期:2016-07-01 00:00:00

  • Mortality events resulting from Australia's catastrophic fires threaten aquatic biota.

    abstract::The consequences of the 2019-2020 bushfires in Australia were also devastating for the aquatic biota. Following abnormal rainfall events in burnt areas, widespread mortality events including fish and invertebrates were recorded in estuarine and freshwater systems. Such negative impacts on aquatic resources highlight t...

    journal_title:Global change biology

    pub_type: 信件

    doi:10.1111/gcb.15282

    authors: Silva LGM,Doyle KE,Duffy D,Humphries P,Horta A,Baumgartner LJ

    更新日期:2020-10-01 00:00:00

  • Population trends influence species ability to track climate change.

    abstract::Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species' climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13478

    authors: Ralston J,DeLuca WV,Feldman RE,King DI

    更新日期:2017-04-01 00:00:00

  • A catastrophic tropical drought kills hydraulically vulnerable tree species.

    abstract::Drought-related tree mortality is now a widespread phenomenon predicted to increase in magnitude with climate change. However, the patterns of which species and trees are most vulnerable to drought, and the underlying mechanisms have remained elusive, in part due to the lack of relevant data and difficulty of predicti...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15037

    authors: Powers JS,Vargas G G,Brodribb TJ,Schwartz NB,Pérez-Aviles D,Smith-Martin CM,Becknell JM,Aureli F,Blanco R,Calderón-Morales E,Calvo-Alvarado JC,Calvo-Obando AJ,Chavarría MM,Carvajal-Vanegas D,Jiménez-Rodríguez CD,Murillo Cha

    更新日期:2020-05-01 00:00:00

  • An optimality-based model explains seasonal variation in C3 plant photosynthetic capacity.

    abstract::The maximum rate of carboxylation (Vcmax ) is an essential leaf trait determining the photosynthetic capacity of plants. Existing approaches for estimating Vcmax at large scale mainly rely on empirical relationships with proxies such as leaf nitrogen/chlorophyll content or hyperspectral reflectance, or on complicated ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15276

    authors: Jiang C,Ryu Y,Wang H,Keenan TF

    更新日期:2020-07-12 00:00:00

  • High ecosystem stability of evergreen broadleaf forests under severe droughts.

    abstract::Global increase in drought occurrences threatens the stability of terrestrial ecosystem functioning. Evergreen broadleaf forests (EBFs) keep leaves throughout the year, and therefore could experience higher drought risks than other biomes. However, the recent temporal variability of global vegetation productivity or l...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14748

    authors: Huang K,Xia J

    更新日期:2019-10-01 00:00:00

  • Finding middle ground: Extending conservation beyond wilderness areas.

    abstract::We show that because of methodological improvements, the human modification map detects higher levels of land modification and is more accurate than the human footprint map across the gradient of modification globally. While we agree that protecting the world's least modified lands or wildlands is essential for conser...

    journal_title:Global change biology

    pub_type: 评论,信件

    doi:10.1111/gcb.14900

    authors: Kennedy CM,Oakleaf JR,Baruch-Mordo S,Theobald DM,Kiesecker J

    更新日期:2020-02-01 00:00:00

  • Points of view matter when assessing biodiversity vulnerability to environmental changes.

    abstract::We can expect different levels of vulnerability depending on the paradigm used to determine the mechanisms that will alter biodiversity under climate change. A multi-paradigm perspective is necessary to get the full picture of biodiversity vulnerability. This is a commentary on Kling et al., 26, 2798-2813. ...

    journal_title:Global change biology

    pub_type: 评论,杂志文章

    doi:10.1111/gcb.15054

    authors: Ordonez A

    更新日期:2020-05-01 00:00:00

  • Limited effect of ozone reductions on the 20-year photosynthesis trend at Harvard forest.

    abstract::Ozone (O3 ) damage to leaves can reduce plant photosynthesis, which suggests that declines in ambient O3 concentrations ([O3 ]) in the United States may have helped increase gross primary production (GPP) in recent decades. Here, we assess the effect of long-term changes in ambient [O3 ] using 20 years of observations...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13300

    authors: Yue X,Keenan TF,Munger W,Unger N

    更新日期:2016-11-01 00:00:00