Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures.

Abstract:

:Equatorial populations of marine species are predicted to be most impacted by global warming because they could be adapted to a narrow range of temperatures in their local environment. We investigated the thermal range at which aerobic metabolic performance is optimum in equatorial populations of coral reef fish in northern Papua New Guinea. Four species of damselfishes and two species of cardinal fishes were held for 14 days at 29, 31, 33, and 34 °C, which incorporated their existing thermal range (29-31 °C) as well as projected increases in ocean surface temperatures of up to 3 °C by the end of this century. Resting and maximum oxygen consumption rates were measured for each species at each temperature and used to calculate the thermal reaction norm of aerobic scope. Our results indicate that one of the six species, Chromis atripectoralis, is already living above its thermal optimum of 29 °C. The other five species appeared to be living close to their thermal optima (ca. 31 °C). Aerobic scope was significantly reduced in all species, and approached zero for two species at 3 °C above current-day temperatures. One species was unable to survive even short-term exposure to 34 °C. Our results indicate that low-latitude reef fish populations are living close to their thermal optima and may be more sensitive to ocean warming than higher-latitude populations. Even relatively small temperature increases (2-3 °C) could result in population declines and potentially redistribution of equatorial species to higher latitudes if adaptation cannot keep pace.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Rummer JL,Couturier CS,Stecyk JA,Gardiner NM,Kinch JP,Nilsson GE,Munday PL

doi

10.1111/gcb.12455

subject

Has Abstract

pub_date

2014-04-01 00:00:00

pages

1055-66

issue

4

eissn

1354-1013

issn

1365-2486

journal_volume

20

pub_type

杂志文章
  • Coralline algal skeletal mineralogy affects grazer impacts.

    abstract::In macroalgal-dominated systems, herbivory is a major driver in controlling ecosystem structure. However, the role of altered plant-herbivore interactions and effects of changes to trophic control under global change are poorly understood. This is because both macroalgae and grazers themselves may be affected by globa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14370

    authors: McCoy SJ,Kamenos NA

    更新日期:2018-10-01 00:00:00

  • Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange.

    abstract::Terrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2 ) concentrations, but processes driving the IAV of net ecosystem CO2 exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated wit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14731

    authors: Fu Z,Stoy PC,Poulter B,Gerken T,Zhang Z,Wakbulcho G,Niu S

    更新日期:2019-10-01 00:00:00

  • Labile carbon retention compensates for CO2 released by priming in forest soils.

    abstract::Increase of belowground C allocation by plants under global warming or elevated CO2 may promote decomposition of soil organic carbon (SOC) by priming and strongly affects SOC dynamics. The specific effects by priming of SOC depend on the amount and frequency of C inputs. Most previous priming studies have investigated...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12458

    authors: Qiao N,Schaefer D,Blagodatskaya E,Zou X,Xu X,Kuzyakov Y

    更新日期:2014-06-01 00:00:00

  • Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity.

    abstract::Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO2 accumulation are emerging, however, the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primar...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14324

    authors: Richier S,Achterberg EP,Humphreys MP,Poulton AJ,Suggett DJ,Tyrrell T,Moore CM

    更新日期:2018-09-01 00:00:00

  • Carbon emissions from South-East Asian peatlands will increase despite emission-reduction schemes.

    abstract::Carbon emissions from drained peatlands converted to agriculture in South-East Asia (i.e., Peninsular Malaysia, Sumatra and Borneo) are globally significant and increasing. Here, we map the growth of South-East Asian peatland agriculture and estimate CO2 emissions due to peat drainage in relation to official land-use ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14340

    authors: Wijedasa LS,Sloan S,Page SE,Clements GR,Lupascu M,Evans TA

    更新日期:2018-10-01 00:00:00

  • Human pressures predict species' geographic range size better than biological traits.

    abstract::Geographic range size is the manifestation of complex interactions between intrinsic species traits and extrinsic environmental conditions. It is also a fundamental ecological attribute of species and a key extinction risk correlate. Past research has primarily focused on the role of biological and environmental predi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12834

    authors: Di Marco M,Santini L

    更新日期:2015-06-01 00:00:00

  • Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings.

    abstract::Simultaneously with warming climate, other climatic and environmental factors are also changing. Here, we investigated for the first time the effects of elevated temperature, increased ultraviolet-B (UVB) radiation, fertilization and all combinations of these on the growth, secondary chemistry and needle structure of ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12464

    authors: Virjamo V,Sutinen S,Julkunen-Tiitto R

    更新日期:2014-07-01 00:00:00

  • Fish communities diverge in species but converge in traits over three decades of warming.

    abstract::Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait-based approaches can provide better insight than species-based (i.e. taxonomic) approaches into community assembly and ecosystem functio...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14785

    authors: McLean M,Mouillot D,Lindegren M,Villéger S,Engelhard G,Murgier J,Auber A

    更新日期:2019-11-01 00:00:00

  • Range margin populations show high climate adaptation lags in European trees.

    abstract::How populations of long-living species respond to climate change depends on phenotypic plasticity and local adaptation processes. Marginal populations are expected to have lags in adaptation (i.e. differences between the climatic optimum that maximizes population fitness and the local climate) because they receive pre...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14881

    authors: Fréjaville T,Vizcaíno-Palomar N,Fady B,Kremer A,Benito Garzón M

    更新日期:2020-02-01 00:00:00

  • Marine-terminating glaciers sustain high productivity in Greenland fjords.

    abstract::Accelerated mass loss from the Greenland ice sheet leads to glacier retreat and an increasing input of glacial meltwater to the fjords and coastal waters around Greenland. These high latitude ecosystems are highly productive and sustain important fisheries, yet it remains uncertain how they will respond to future chan...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13801

    authors: Meire L,Mortensen J,Meire P,Juul-Pedersen T,Sejr MK,Rysgaard S,Nygaard R,Huybrechts P,Meysman FJR

    更新日期:2017-12-01 00:00:00

  • Global environmental changes impact soil hydraulic functions through biophysical feedbacks.

    abstract::Although only representing 0.05% of global freshwater, or 0.001% of all global water, soil water supports all terrestrial biological life. Soil moisture behaviour in most models is constrained by hydraulic parameters that do not change. Here we argue that biological feedbacks from plants, macro-fauna and the microbiom...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14626

    authors: Robinson DA,Hopmans JW,Filipovic V,van der Ploeg M,Lebron I,Jones SB,Reinsch S,Jarvis N,Tuller M

    更新日期:2019-06-01 00:00:00

  • Vegetation growth enhancement in urban environments of the Conterminous United States.

    abstract::Cities are natural laboratories for studying vegetation responses to global environmental changes because of their climate, atmospheric, and biogeochemical conditions. However, few holistic studies have been conducted on the impact of urbanization on vegetation growth. We decomposed the overall impacts of urbanization...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14317

    authors: Jia W,Zhao S,Liu S

    更新日期:2018-09-01 00:00:00

  • Plant diversity loss reduces soil respiration across terrestrial ecosystems.

    abstract::The rapid global biodiversity loss has led to the decline in ecosystem function. Despite the critical importance of soil respiration (Rs) in the global carbon and nutrient cycles, how plant diversity loss affects Rs remains uncertain. Here we present a meta-analysis using 446 paired observations from 95 published stud...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14567

    authors: Chen X,Chen HYH

    更新日期:2019-01-06 00:00:00

  • Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios.

    abstract::The combination of global and local stressors is leading to a decline in coral reef health globally. In the case of eutrophication, increased concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) are largely attributed to local land use changes. From the global perspective, increased atmospheric CO...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12035

    authors: Reymond CE,Lloyd A,Kline DI,Dove SG,Pandolfi JM

    更新日期:2013-01-01 00:00:00

  • Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem.

    abstract::Improving nitrogen (N) management for greater agricultural output while minimizing unintended environmental consequences is critical in the endeavor of feeding the growing population sustainably amid climate change. Enhanced-efficiency fertilizers (EEFs) have been developed to better synchronize fertilizer N release w...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13918

    authors: Li T,Zhang W,Yin J,Chadwick D,Norse D,Lu Y,Liu X,Chen X,Zhang F,Powlson D,Dou Z

    更新日期:2018-02-01 00:00:00

  • Effects of climate warming on carbon fluxes in grasslands- A global meta-analysis.

    abstract::Climate warming will affect terrestrial ecosystems in many ways, and warming-induced changes in terrestrial carbon (C) cycling could accelerate or slow future warming. So far, warming experiments have shown a wide range of C flux responses, across and within biome types. However, past meta-analyses of C flux responses...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14603

    authors: Wang N,Quesada B,Xia L,Butterbach-Bahl K,Goodale CL,Kiese R

    更新日期:2019-05-01 00:00:00

  • Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from long-term data assimilation.

    abstract::It is critical to accurately estimate carbon (C) turnover time as it dominates the uncertainty in ecosystem C sinks and their response to future climate change. In the absence of direct observations of ecosystem C losses, C turnover times are commonly estimated under the steady state assumption (SSA), which has been a...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14547

    authors: Ge R,He H,Ren X,Zhang L,Yu G,Smallman TL,Zhou T,Yu SY,Luo Y,Xie Z,Wang S,Wang H,Zhou G,Zhang Q,Wang A,Fan Z,Zhang Y,Shen W,Yin H,Lin L

    更新日期:2019-03-01 00:00:00

  • Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics.

    abstract::As the ocean warms, thermal tolerance of developmental stages may be a key driver of changes in the geographical distributions and abundance of marine invertebrates. Additional stressors such as ocean acidification may influence developmental thermal windows and are therefore important considerations for predicting di...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13452

    authors: Karelitz SE,Uthicke S,Foo SA,Barker MF,Byrne M,Pecorino D,Lamare MD

    更新日期:2017-02-01 00:00:00

  • Quantifying variety-specific heat resistance and the potential for adaptation to climate change.

    abstract::The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy invo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13163

    authors: Tack J,Barkley A,Rife TW,Poland JA,Nalley LL

    更新日期:2016-08-01 00:00:00

  • High ecosystem stability of evergreen broadleaf forests under severe droughts.

    abstract::Global increase in drought occurrences threatens the stability of terrestrial ecosystem functioning. Evergreen broadleaf forests (EBFs) keep leaves throughout the year, and therefore could experience higher drought risks than other biomes. However, the recent temporal variability of global vegetation productivity or l...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14748

    authors: Huang K,Xia J

    更新日期:2019-10-01 00:00:00

  • Vapor-pressure deficit and extreme climatic variables limit tree growth.

    abstract::Assessing the effect of global warming on forest growth requires a better understanding of species-specific responses to climate change conditions. Norway spruce and European beech are among the dominant tree species in Europe and are largely used by the timber industry. Their sensitivity to changes in climate and ext...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13973

    authors: Sanginés de Cárcer P,Vitasse Y,Peñuelas J,Jassey VEJ,Buttler A,Signarbieux C

    更新日期:2018-03-01 00:00:00

  • Aphid-willow interactions in a high Arctic ecosystem: responses to raised temperature and goose disturbance.

    abstract::Recently, there have been several studies using open top chambers (OTCs) or cloches to examine the response of Arctic plant communities to artificially elevated temperatures. Few, however, have investigated multitrophic systems, or the effects of both temperature and vertebrate grazing treatments on invertebrates. Thi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12284

    authors: Gillespie MA,Jónsdóttir IS,Hodkinson ID,Cooper EJ

    更新日期:2013-12-01 00:00:00

  • Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems.

    abstract::Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters infl...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.13059

    authors: Cloern JE,Abreu PC,Carstensen J,Chauvaud L,Elmgren R,Grall J,Greening H,Johansson JO,Kahru M,Sherwood ET,Xu J,Yin K

    更新日期:2016-02-01 00:00:00

  • Observed and modelled historical trends in the water-use efficiency of plants and ecosystems.

    abstract::Plant water-use efficiency (WUE, the carbon gained through photosynthesis per unit of water lost through transpiration) is a tracer of the plant physiological controls on the exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere. At the leaf level, rising CO2 concentrations tend to inc...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14634

    authors: Lavergne A,Graven H,De Kauwe MG,Keenan TF,Medlyn BE,Prentice IC

    更新日期:2019-07-01 00:00:00

  • Lessons from two high CO2 worlds - future oceans and intensive aquaculture.

    abstract::Exponentially rising CO2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO2 directly affects acid-base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13515

    authors: Ellis RP,Urbina MA,Wilson RW

    更新日期:2017-06-01 00:00:00

  • What lies beneath? Population dynamics conceal pace-of-life and sex ratio variation, with implications for resilience to environmental change.

    abstract::Life-history and pace-of-life syndrome theory predict that populations are comprised of individuals exhibiting different reproductive schedules and associated behavioural and physiological traits, optimized to prevailing social and environmental factors. Changing weather and social conditions provide in situ cues alte...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15106

    authors: Bright Ross JG,Newman C,Buesching CD,Macdonald DW

    更新日期:2020-06-01 00:00:00

  • Reproduction and seedling establishment of Picea glauca across the northernmost forest-tundra region in Canada.

    abstract::The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02769.x

    authors: Walker X,Henry GHR,McLeod K,Hofgaard A

    更新日期:2012-10-01 00:00:00

  • Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species.

    abstract::Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12173

    authors: Thompson SE,Katul GG

    更新日期:2013-06-01 00:00:00

  • Low phosphorus supply constrains plant responses to elevated CO2 : A meta-analysis.

    abstract::Phosphorus (P) is an essential macro-nutrient required for plant metabolism and growth. Low P availability could potentially limit plant responses to elevated carbon dioxide (eCO2 ), but consensus has yet to be reached on the extent of this limitation. Here, based on data from experiments that manipulated both CO2 and...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.15277

    authors: Jiang M,Caldararu S,Zhang H,Fleischer K,Crous KY,Yang J,De Kauwe MG,Ellsworth DS,Reich PB,Tissue DT,Zaehle S,Medlyn BE

    更新日期:2020-10-01 00:00:00

  • Divergent long-term trends and interannual variation in ecosystem resource use efficiencies of a southern boreal old black spruce forest 1999-2017.

    abstract::Long-term trends in ecosystem resource use efficiencies (RUEs) and their controlling factors are key pieces of information for understanding how an ecosystem responds to climate change. We used continuous eddy covariance and microclimate data over the period 1999-2017 from a 120-year-old black spruce stand in central ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14674

    authors: Liu P,Black TA,Jassal RS,Zha T,Nesic Z,Barr AG,Helgason WD,Jia X,Tian Y,Stephens JJ,Ma J

    更新日期:2019-09-01 00:00:00