Vegetation growth enhancement in urban environments of the Conterminous United States.

Abstract:

:Cities are natural laboratories for studying vegetation responses to global environmental changes because of their climate, atmospheric, and biogeochemical conditions. However, few holistic studies have been conducted on the impact of urbanization on vegetation growth. We decomposed the overall impacts of urbanization on vegetation growth into direct (replacement of original land surfaces by impervious built-up) and indirect (urban environments) components, using a conceptual framework and remotely sensed data for 377 metropolitan statistical areas (MSAs) in the conterminous United States (CONUS) in 2001, 2006, and 2011. Results showed that urban pixels are often greener than expected given the amount of paved surface they contain. The vegetation growth enhancement due to indirect effects occurred in 88.4%, 90.8%, and 92.9% of urban bins in 2001, 2006, and 2011, respectively. By defining offset value as the ratio of the absolute indirect and direct impact, we obtained that growth enhancement due to indirect effects compensated for about 29.2%, 29.5%, and 31.0% of the reduced productivity due to loss of vegetated surface area on average in 2001, 2006, and 2011, respectively. Vegetation growth responses to urbanization showed little temporal variation but large regional differences with higher offset value in the western CONUS than in the eastern CONUS. Our study highlights the prevalence of vegetation growth enhancement in urban environments and the necessity of differentiating various impacts of urbanization on vegetation growth, and calls for tailored field experiments to understand the relative contributions of various driving forces to vegetation growth and predict vegetation responses to future global change using cities as harbingers.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Jia W,Zhao S,Liu S

doi

10.1111/gcb.14317

subject

Has Abstract

pub_date

2018-09-01 00:00:00

pages

4084-4094

issue

9

eissn

1354-1013

issn

1365-2486

journal_volume

24

pub_type

杂志文章
  • El Niño Southern Oscillation influences the abundance and movements of a marine top predator in coastal waters.

    abstract::Large-scale climate modes such as El Niño Southern Oscillation (ENSO) influence population dynamics in many species, including marine top predators. However, few quantitative studies have investigated the influence of large-scale variability on resident marine top predator populations. We examined the effect of climat...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13892

    authors: Sprogis KR,Christiansen F,Wandres M,Bejder L

    更新日期:2018-03-01 00:00:00

  • Native and exotic plant cover vary inversely along a climate gradient 11 years following stand-replacing wildfire in a dry coniferous forest, Oregon, USA.

    abstract::Community re-assembly following future disturbances will often occur under warmer and more moisture-limited conditions than when current communities assembled. Because the establishment stage is regularly the most sensitive to climate and competition, the trajectory of recovery from disturbance in a changing environme...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12775

    authors: Dodson EK,Root HT

    更新日期:2015-02-01 00:00:00

  • Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields?

    abstract::In rice cultivation, there are controversial reports on net impacts of nitrogen (N) fertilizers on methane (CH 4 ) emissions. Nitrogen fertilizers increase crop growth as well as alter CH 4 producing (Methanogens) and consuming (Methanotrophs) microbes, and thereby produce complex effects on CH 4 emissions. Objectives...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02762.x

    authors: Banger K,Tian H,Lu C

    更新日期:2012-10-01 00:00:00

  • Global changes may be promoting a rise in select cyanobacteria in nutrient-poor northern lakes.

    abstract::The interacting effects of global changes-including increased temperature, altered precipitation, reduced acidification and increased dissolved organic matter loads to lakes-are anticipated to create favourable environmental conditions for cyanobacteria in northern lakes. However, responses of cyanobacteria to these g...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15189

    authors: Freeman EC,Creed IF,Jones B,Bergström AK

    更新日期:2020-09-01 00:00:00

  • Fungal community structure and function shifts with atmospheric nitrogen deposition.

    abstract::Fungal decomposition of soil organic matter depends on soil nitrogen (N) availability. This ecosystem process is being jeopardized by changes in N inputs that have resulted from a tripling of atmospheric N deposition in the last century. Soil fungi are impacted by atmospheric N deposition due to higher N availability,...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15444

    authors: Moore JAM,Anthony MA,Pec GJ,Trocha LK,Trzebny A,Geyer KM,van Diepen LTA,Frey SD

    更新日期:2020-11-07 00:00:00

  • Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir.

    abstract::Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13328

    authors: Ford KR,Harrington CA,Bansal S,Gould PJ,St Clair JB

    更新日期:2016-11-01 00:00:00

  • Warming alters coupled carbon and nutrient cycles in experimental streams.

    abstract::Although much effort has been devoted to quantifying how warming alters carbon cycling across diverse ecosystems, less is known about how these changes are linked to the cycling of bioavailable nitrogen and phosphorus. In freshwater ecosystems, benthic biofilms (i.e. thin films of algae, bacteria, fungi, and detrital ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13205

    authors: Williamson TJ,Cross WF,Benstead JP,Gíslason GM,Hood JM,Huryn AD,Johnson PW,Welter JR

    更新日期:2016-06-01 00:00:00

  • A coral reef refuge in the Red Sea.

    abstract::The stability and persistence of coral reefs in the decades to come is uncertain due to global warming and repeated bleaching events that will lead to reduced resilience of these ecological and socio-economically important ecosystems. Identifying key refugia is potentially important for future conservation actions. We...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12356

    authors: Fine M,Gildor H,Genin A

    更新日期:2013-12-01 00:00:00

  • Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites.

    abstract::We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15314

    authors: Nelson JA,Pérez-Priego O,Zhou S,Poyatos R,Zhang Y,Blanken PD,Gimeno TE,Wohlfahrt G,Desai AR,Gioli B,Limousin JM,Bonal D,Paul-Limoges E,Scott RL,Varlagin A,Fuchs K,Montagnani L,Wolf S,Delpierre N,Berveiller D,Gharu

    更新日期:2020-12-01 00:00:00

  • Methane emissions from contrasting urban freshwaters: Rates, drivers, and a whole-city footprint.

    abstract::Global urbanization trends impose major alterations on surface waters. This includes impacts on ecosystem functioning that can involve feedbacks on climate through changes in rates of greenhouse gas emissions. The combination of high nutrient supply and shallow depth typical of urban freshwaters is particularly conduc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14799

    authors: Herrero Ortega S,Romero González-Quijano C,Casper P,Singer GA,Gessner MO

    更新日期:2019-12-01 00:00:00

  • Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050.

    abstract::In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature-dependent transmission model for ZIKV t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15384

    authors: Ryan SJ,Carlson CJ,Tesla B,Bonds MH,Ngonghala CN,Mordecai EA,Johnson LR,Murdock CC

    更新日期:2021-01-01 00:00:00

  • Global environmental costs of China's thirst for milk.

    abstract::China has an ever-increasing thirst for milk, with a predicted 3.2-fold increase in demand by 2050 compared to the production level in 2010. What are the environmental implications of meeting this demand, and what is the preferred pathway? We addressed these questions by using a nexus approach, to examine the interdep...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14047

    authors: Bai Z,Lee MRF,Ma L,Ledgard S,Oenema O,Velthof GL,Ma W,Guo M,Zhao Z,Wei S,Li S,Liu X,Havlík P,Luo J,Hu C,Zhang F

    更新日期:2018-05-01 00:00:00

  • Why decadal to century timescale palaeoclimate data are needed to explain present-day patterns of biological diversity and change.

    abstract::The current distribution of species, environmental conditions and their interactions represent only one snapshot of a planet that is continuously changing, in part due to human influences. To distinguish human impacts from natural factors, the magnitude and pace of climate shifts, since the Last Glacial Maximum, are o...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13932

    authors: Fordham DA,Saltré F,Brown SC,Mellin C,Wigley TML

    更新日期:2018-03-01 00:00:00

  • Evapotranspiration and water yield of a pine-broadleaf forest are not altered by long-term atmospheric [CO2 ] enrichment under native or enhanced soil fertility.

    abstract::Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosy...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14363

    authors: Ward EJ,Oren R,Seok Kim H,Kim D,Tor-Ngern P,Ewers BE,McCarthy HR,Oishi AC,Pataki DE,Palmroth S,Phillips NG,Schäfer KVR

    更新日期:2018-10-01 00:00:00

  • Incorporating climate change adaptation into marine protected area planning.

    abstract::Climate change is increasingly impacting marine protected areas (MPAs) and MPA networks, yet adaptation strategies are rarely incorporated into MPA design and management plans according to the primary scientific literature. Here we review the state of knowledge for adapting existing and future MPAs to climate change a...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.15094

    authors: Wilson KL,Tittensor DP,Worm B,Lotze HK

    更新日期:2020-06-01 00:00:00

  • Adapting management to a changing world: Warm temperatures, dry soil, and interannual variability limit restoration success of a dominant woody shrub in temperate drylands.

    abstract::Restoration and rehabilitation of native vegetation in dryland ecosystems, which encompass over 40% of terrestrial ecosystems, is a common challenge that continues to grow as wildfire and biological invasions transform dryland plant communities. The difficulty in part stems from low and variable precipitation, combine...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14374

    authors: Shriver RK,Andrews CM,Pilliod DS,Arkle RS,Welty JL,Germino MJ,Duniway MC,Pyke DA,Bradford JB

    更新日期:2018-10-01 00:00:00

  • Miami heat: Urban heat islands influence the thermal suitability of habitats for ectotherms.

    abstract::The urban heat island effect, where urban areas exhibit higher temperatures than less-developed suburban and natural habitats, occurs in cities across the globe and is well understood from a physical perspective and at broad spatial scales. However, very little is known about how thermal variation caused by urbanizati...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14509

    authors: Battles AC,Kolbe JJ

    更新日期:2019-02-01 00:00:00

  • Rock glaciers in crystalline catchments: Hidden permafrost-related threats to alpine headwater lakes.

    abstract::A global warming-induced transition from glacial to periglacial processes has been identified in mountainous regions around the world. Degrading permafrost in pristine periglacial environments can produce acid rock drainage (ARD) and cause severe ecological damage in areas underlain by sulfide-bearing bedrock. Limnolo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13985

    authors: Ilyashuk BP,Ilyashuk EA,Psenner R,Tessadri R,Koinig KA

    更新日期:2018-04-01 00:00:00

  • Temporal response of soil organic carbon after grassland-related land-use change.

    abstract::The net flux of CO2 exchanged with the atmosphere following grassland-related land-use change (LUC) depends on the subsequent temporal dynamics of soil organic carbon (SOC). Yet, the magnitude and timing of these dynamics are still unclear. We compiled a global data set of 836 paired-sites to quantify temporal SOC cha...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14328

    authors: Li W,Ciais P,Guenet B,Peng S,Chang J,Chaplot V,Khudyaev S,Peregon A,Piao S,Wang Y,Yue C

    更新日期:2018-10-01 00:00:00

  • Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity.

    abstract::Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO2 accumulation are emerging, however, the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primar...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14324

    authors: Richier S,Achterberg EP,Humphreys MP,Poulton AJ,Suggett DJ,Tyrrell T,Moore CM

    更新日期:2018-09-01 00:00:00

  • A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning.

    abstract::Diagnostic carbon cycle models produce estimates of net ecosystem production (NEP, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite-based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covar...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12313

    authors: Turner DP,Jacobson AR,Ritts WD,Wang WL,Nemani R

    更新日期:2013-11-01 00:00:00

  • Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions.

    abstract::Atmospheric nitrogen (N) deposition has frequently been observed to increase soil carbon (C) storage in forests, but the underlying mechanisms still remain unclear. Changes in microbial community composition and substrate use are hypothesized to be one of the key mechanisms affected by N inputs. Here, we investigated ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12374

    authors: Griepentrog M,Bodé S,Boeckx P,Hagedorn F,Heim A,Schmidt MW

    更新日期:2014-01-01 00:00:00

  • Temperatures and the growth and development of maize and rice: a review.

    abstract::Because of global land surface warming, extreme temperature events are expected to occur more often and more intensely, affecting the growth and development of the major cereal crops in several ways, thus affecting the production component of food security. In this study, we have identified rice and maize crop respons...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12389

    authors: Sánchez B,Rasmussen A,Porter JR

    更新日期:2014-02-01 00:00:00

  • Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes.

    abstract::The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological resp...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15273

    authors: Beas-Luna R,Micheli F,Woodson CB,Carr M,Malone D,Torre J,Boch C,Caselle JE,Edwards M,Freiwald J,Hamilton SL,Hernandez A,Konar B,Kroeker KJ,Lorda J,Montaño-Moctezuma G,Torres-Moye G

    更新日期:2020-09-09 00:00:00

  • Is Antarctica under threat of alien species invasion?

    abstract::The last decade has seen a rapid development of scientific, logistic and tourist activities, especially in the Antarctic region with the mildest climatic conditions: the Antarctic Peninsula. This region is also exhibiting rapid regional warming and all of the already diagnosed alien species in the Antarctic Treaty Are...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15013

    authors: Chwedorzewska KJ,Korczak-Abshire M,Znój A

    更新日期:2020-01-24 00:00:00

  • Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.

    abstract::Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12957

    authors: Wiesmeier M,Munro S,Barthold F,Steffens M,Schad P,Kögel-Knabner I

    更新日期:2015-10-01 00:00:00

  • Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents.

    abstract::The effects of short-term drought on soil microbial communities remain largely unexplored, particularly at large scales and under field conditions. We used seven experimental sites from two continents (North America and Australia) to evaluate the impacts of imposed extreme drought on the abundance, community compositi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14113

    authors: Ochoa-Hueso R,Collins SL,Delgado-Baquerizo M,Hamonts K,Pockman WT,Sinsabaugh RL,Smith MD,Knapp AK,Power SA

    更新日期:2018-07-01 00:00:00

  • Four decades of functional community change reveals gradual trends and low interlinkage across trophic groups in a large marine ecosystem.

    abstract::The rate at which biological diversity is altered on both land and in the sea, makes temporal community development a critical and fundamental part of understanding global change. With advancements in trait-based approaches, the focus on the impact of temporal change has shifted towards its potential effects on the fu...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14552

    authors: Törnroos A,Pecuchet L,Olsson J,Gårdmark A,Blomqvist M,Lindegren M,Bonsdorff E

    更新日期:2018-12-20 00:00:00

  • Losing ground: past history and future fate of Arctic small mammals in a changing climate.

    abstract::According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate wa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12157

    authors: Prost S,Guralnick RP,Waltari E,Fedorov VB,Kuzmina E,Smirnov N,van Kolfschoten T,Hofreiter M,Vrieling K

    更新日期:2013-06-01 00:00:00

  • Disentangling how climate change can affect an aquatic food web by combining multiple experimental approaches.

    abstract::Predicting the biological effects of climate change presents major challenges due to the interplay of potential biotic and abiotic mechanisms. Climate change can create unexpected outcomes by altering species interactions, and uncertainty over the ability of species to develop in situ tolerance or track environmental ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14717

    authors: Amundrud SL,Srivastava DS

    更新日期:2019-10-01 00:00:00