Temporal response of soil organic carbon after grassland-related land-use change.

Abstract:

:The net flux of CO2 exchanged with the atmosphere following grassland-related land-use change (LUC) depends on the subsequent temporal dynamics of soil organic carbon (SOC). Yet, the magnitude and timing of these dynamics are still unclear. We compiled a global data set of 836 paired-sites to quantify temporal SOC changes after grassland-related LUC. In order to discriminate between SOC losses from the initial ecosystem and gains from the secondary one, the post-LUC time series of SOC data was combined with satellite-based net primary production observations as a proxy of carbon input to the soil. Globally, land conversion from either cropland or forest into grassland leads to SOC accumulation; the reverse shows net SOC loss. The SOC response curves vary between different regions. Conversion of cropland to managed grassland results in more SOC accumulation than natural grassland recovery from abandoned cropland. We did not consider the biophysical variables (e.g., climate conditions and soil properties) when fitting the SOC turnover rate into the observation data but analyzed the relationships between the fitted turnover rate and these variables. The SOC turnover rate is significantly correlated with temperature and precipitation (p < 0.05), but not with the clay fraction of soils (p > 0.05). Comparing our results with predictions from bookkeeping models, we found that bookkeeping models overestimate by 56% of the long-term (100 years horizon) cumulative SOC emissions for grassland-related LUC types in tropical and temperate regions since 2000. We also tested the spatial representativeness of our data set and calculated SOC response curves using the representative subset of sites in each region. Our study provides new insight into the impact grassland-related LUC on the global carbon budget and sheds light on the potential of grassland conservation for climate mitigation.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Li W,Ciais P,Guenet B,Peng S,Chang J,Chaplot V,Khudyaev S,Peregon A,Piao S,Wang Y,Yue C

doi

10.1111/gcb.14328

subject

Has Abstract

pub_date

2018-10-01 00:00:00

pages

4731-4746

issue

10

eissn

1354-1013

issn

1365-2486

journal_volume

24

pub_type

杂志文章
  • Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus).

    abstract::The European spruce bark beetle Ips typographus is the most important insect pest in Central European forests. Under climate change, its phenology is presumed to be changing and mass infestations becoming more likely. While several studies have investigated climate effects across a latitudinal gradient, it remains an ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14766

    authors: Jakoby O,Lischke H,Wermelinger B

    更新日期:2019-12-01 00:00:00

  • A catastrophic tropical drought kills hydraulically vulnerable tree species.

    abstract::Drought-related tree mortality is now a widespread phenomenon predicted to increase in magnitude with climate change. However, the patterns of which species and trees are most vulnerable to drought, and the underlying mechanisms have remained elusive, in part due to the lack of relevant data and difficulty of predicti...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15037

    authors: Powers JS,Vargas G G,Brodribb TJ,Schwartz NB,Pérez-Aviles D,Smith-Martin CM,Becknell JM,Aureli F,Blanco R,Calderón-Morales E,Calvo-Alvarado JC,Calvo-Obando AJ,Chavarría MM,Carvajal-Vanegas D,Jiménez-Rodríguez CD,Murillo Cha

    更新日期:2020-05-01 00:00:00

  • Gender specific patterns of carbon uptake and water use in a dominant riparian tree species exposed to a warming climate.

    abstract::Air temperatures in the arid western United States are predicted to increase over the next century. These increases will likely impact the distribution of plant species, particularly dioecious species that show a spatial segregation of the sexes across broad resource gradients. On the basis of spatial segregation patt...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12230

    authors: Hultine KR,Burtch KG,Ehleringer JR

    更新日期:2013-11-01 00:00:00

  • Losing ground: past history and future fate of Arctic small mammals in a changing climate.

    abstract::According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate wa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12157

    authors: Prost S,Guralnick RP,Waltari E,Fedorov VB,Kuzmina E,Smirnov N,van Kolfschoten T,Hofreiter M,Vrieling K

    更新日期:2013-06-01 00:00:00

  • Incorporating climate change adaptation into marine protected area planning.

    abstract::Climate change is increasingly impacting marine protected areas (MPAs) and MPA networks, yet adaptation strategies are rarely incorporated into MPA design and management plans according to the primary scientific literature. Here we review the state of knowledge for adapting existing and future MPAs to climate change a...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.15094

    authors: Wilson KL,Tittensor DP,Worm B,Lotze HK

    更新日期:2020-06-01 00:00:00

  • Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities.

    abstract::Many arctic ecological processes are regulated by soil temperature that is tightly interconnected with snow cover distribution and persistence. Recently, various climate-induced changes have been observed in arctic tundra ecosystems, e.g. shrub expansion, resulting in reduction in albedo and greater C fixation in abov...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13294

    authors: Morgado LN,Semenova TA,Welker JM,Walker MD,Smets E,Geml J

    更新日期:2016-09-01 00:00:00

  • Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems.

    abstract::Human and natural systems have adapted to and evolved within historical climatic conditions. Anthropogenic climate change has the potential to alter these conditions such that onset of unprecedented climatic extremes will outpace evolutionary and adaptive capabilities. To assess whether and when future climate extreme...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14329

    authors: Tan X,Gan TY,Horton DE

    更新日期:2018-10-01 00:00:00

  • Dynamic habitat suitability modelling reveals rapid poleward distribution shift in a mobile apex predator.

    abstract::Many taxa are undergoing distribution shifts in response to anthropogenic climate change. However, detecting a climate signal in mobile species is difficult due to their wide-ranging, patchy distributions, often driven by natural climate variability. For example, difficulties associated with assessing pelagic fish dis...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13129

    authors: Hill NJ,Tobin AJ,Reside AE,Pepperell JG,Bridge TC

    更新日期:2016-03-01 00:00:00

  • The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance.

    abstract::Global change is affecting terrestrial carbon (C) balances. The effect of climate on ecosystem C balance has been largely explored, but the roles of other concurrently changing factors, such as diversity and nutrient availability, remain elusive. We used eddy-covariance C-flux measurements from 62 ecosystems from whic...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15385

    authors: Fernández-Martínez M,Sardans J,Musavi T,Migliavacca M,Iturrate-Garcia M,Scholes RJ,Peñuelas J,Janssens IA

    更新日期:2020-12-01 00:00:00

  • Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China.

    abstract::Controlled experiments have shown that global changes decouple the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in shifting stoichiometry that lies at the core of ecosystem functioning. However, the response of soil stoichiometry to global changes in natural ecosystems with differen...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13939

    authors: Yu Z,Wang M,Huang Z,Lin TC,Vadeboncoeur MA,Searle EB,Chen HYH

    更新日期:2018-03-01 00:00:00

  • The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores.

    abstract::The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13257

    authors: Ding J,Li F,Yang G,Chen L,Zhang B,Liu L,Fang K,Qin S,Chen Y,Peng Y,Ji C,He H,Smith P,Yang Y

    更新日期:2016-08-01 00:00:00

  • Hotspots of climate change impacts in sub-Saharan Africa and implications for adaptation and development.

    abstract::Development efforts for poverty reduction and food security in sub-Saharan Africa will have to consider future climate change impacts. Large uncertainties in climate change impact assessments do not necessarily complicate, but can inform development strategies. The design of development strategies will need to conside...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12586

    authors: Müller C,Waha K,Bondeau A,Heinke J

    更新日期:2014-08-01 00:00:00

  • Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms.

    abstract::Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13652

    authors: Lefevre S,McKenzie DJ,Nilsson GE

    更新日期:2017-09-01 00:00:00

  • Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains.

    abstract::In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Suc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13704

    authors: Tepley AJ,Thompson JR,Epstein HE,Anderson-Teixeira KJ

    更新日期:2017-10-01 00:00:00

  • Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO(2) against measurements from an 11-year FACE experiment on grazed pasture.

    abstract::Ecosystem models play a crucial role in understanding and evaluating the combined impacts of rising atmospheric CO2 concentration and changing climate on terrestrial ecosystems. However, we are not aware of any studies where the capacity of models to simulate intra- and inter-annual variation in responses to elevated ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12358

    authors: Li FY,Newton PC,Lieffering M

    更新日期:2014-01-01 00:00:00

  • Disentangling how climate change can affect an aquatic food web by combining multiple experimental approaches.

    abstract::Predicting the biological effects of climate change presents major challenges due to the interplay of potential biotic and abiotic mechanisms. Climate change can create unexpected outcomes by altering species interactions, and uncertainty over the ability of species to develop in situ tolerance or track environmental ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14717

    authors: Amundrud SL,Srivastava DS

    更新日期:2019-10-01 00:00:00

  • Do increased summer precipitation and N deposition alter fine root dynamics in a Mojave Desert ecosystem?

    abstract::Climate change is expected to impact the amount and distribution of precipitation in the arid southwestern United States. In addition, nitrogen (N) deposition is increasing in these regions due to increased urbanization. Responses of belowground plant activity to increases in soil water content and N have shown incons...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12082

    authors: Verburg PS,Young AC,Stevenson BA,Glanzmann I,Arnone JA 3rd,Marion GM,Holmes C,Nowak RS

    更新日期:2013-03-01 00:00:00

  • Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends.

    abstract::The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net prim...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12187

    authors: Piao S,Sitch S,Ciais P,Friedlingstein P,Peylin P,Wang X,Ahlström A,Anav A,Canadell JG,Cong N,Huntingford C,Jung M,Levis S,Levy PE,Li J,Lin X,Lomas MR,Lu M,Luo Y,Ma Y,Myneni RB,Poulter B,Sun Z,Wang T,Viovy

    更新日期:2013-07-01 00:00:00

  • Cocoa agroforestry is less resilient to suboptimal and extreme climate than cocoa in full sun: Reply to Norgrove (2017).

    abstract::Resilience of cocoa agroforestry vs. full sun under extreme climatic conditions. In the specific case of our study, the two shade tree species associated with cocoa resulted in strong competition for water and became a disadvantage to the cocoa plants contrary to expected positive effects. ...

    journal_title:Global change biology

    pub_type: 评论,信件

    doi:10.1111/gcb.14044

    authors: Abdulai I,Vaast P,Hoffmann MP,Asare R,Jassogne L,Asten PV,Rötter RP,Graefe S

    更新日期:2018-05-01 00:00:00

  • Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2 -acidification.

    abstract::Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13987

    authors: Davis BE,Flynn EE,Miller NA,Nelson FA,Fangue NA,Todgham AE

    更新日期:2018-02-01 00:00:00

  • Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050.

    abstract::In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature-dependent transmission model for ZIKV t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15384

    authors: Ryan SJ,Carlson CJ,Tesla B,Bonds MH,Ngonghala CN,Mordecai EA,Johnson LR,Murdock CC

    更新日期:2021-01-01 00:00:00

  • Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem.

    abstract::Improving nitrogen (N) management for greater agricultural output while minimizing unintended environmental consequences is critical in the endeavor of feeding the growing population sustainably amid climate change. Enhanced-efficiency fertilizers (EEFs) have been developed to better synchronize fertilizer N release w...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13918

    authors: Li T,Zhang W,Yin J,Chadwick D,Norse D,Lu Y,Liu X,Chen X,Zhang F,Powlson D,Dou Z

    更新日期:2018-02-01 00:00:00

  • From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach.

    abstract::Maps of continental-scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time-scales. User groups with an interest in past land cover include the clim...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12776

    authors: Fyfe RM,Woodbridge J,Roberts N

    更新日期:2015-03-01 00:00:00

  • Can carbon emissions from tropical deforestation drop by 50% in 5 years?

    abstract::Halving carbon emissions from tropical deforestation by 2020 could help bring the international community closer to the agreed goal of <2 degree increase in global average temperature change and is consistent with a target set last year by the governments, corporations, indigenous peoples' organizations and non-govern...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13153

    authors: Zarin DJ,Harris NL,Baccini A,Aksenov D,Hansen MC,Azevedo-Ramos C,Azevedo T,Margono BA,Alencar AC,Gabris C,Allegretti A,Potapov P,Farina M,Walker WS,Shevade VS,Loboda TV,Turubanova S,Tyukavina A

    更新日期:2016-04-01 00:00:00

  • Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China.

    abstract::Autumn phenology plays a critical role in regulating climate-biosphere interactions. However, the climatic drivers of autumn phenology remain unclear. In this study, we applied four methods to estimate the date of the end of the growing season (EOS) across China's temperate biomes based on a 30-year normalized differe...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13081

    authors: Liu Q,Fu YH,Zeng Z,Huang M,Li X,Piao S

    更新日期:2016-02-01 00:00:00

  • Effects of simulated heat waves on an experimental plant-herbivore-predator food chain.

    abstract::Greater climatic variability and extreme climatic events are currently emerging as two of the most important facets of climate change. Predicting the effects of extreme climatic events, such as heat waves, is a major challenge because they may affect both organisms and trophic interactions, leading to complex response...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12094

    authors: Sentis A,Hemptinne JL,Brodeur J

    更新日期:2013-03-01 00:00:00

  • Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes.

    abstract::Changes in peak photosynthesis timing (PPT) could substantially change the seasonality of the terrestrial carbon cycle. Spring PPT in dry regions has been documented for some individual plant species on a stand scale, but both the spatio-temporal pattern of shifting PPT on a continental scale and its determinants rema...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13224

    authors: Xu C,Liu H,Williams AP,Yin Y,Wu X

    更新日期:2016-08-01 00:00:00

  • Warming and drought reduce temperature sensitivity of nitrogen transformations.

    abstract::Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12063

    authors: Novem Auyeung DS,Suseela V,Dukes JS

    更新日期:2013-02-01 00:00:00

  • Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale.

    abstract::Pollinators provide crucial ecosystem services that underpin to wild plant reproduction and yields of insect-pollinated crops. Understanding the relative impacts of anthropogenic pressures and climate on the structure of plant-pollinator interaction networks is vital considering ongoing global change and pollinator de...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15474

    authors: Doré M,Fontaine C,Thébault E

    更新日期:2020-12-03 00:00:00

  • Hydrological response of biological soil crusts to global warming: A ten-year simulative study.

    abstract::Biological soil crusts across the desert regions play a key role in regional ecological security and ecological health. They are vital biotic components of desert ecosystems that maintain soil stability, fix carbon and nitrogen, influence the establishment of vascular plants, and serve as habitats for a large number o...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14378

    authors: Li XR,Jia RL,Zhang ZS,Zhang P,Hui R

    更新日期:2018-10-01 00:00:00