Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange.

Abstract:

:Terrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2 ) concentrations, but processes driving the IAV of net ecosystem CO2 exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated with ecological processes that determine the IAV of NEE. Here, we decompose the annual NEE of global terrestrial ecosystems into their phenological and physiological components, namely maximum carbon uptake (MCU) and release (MCR), the carbon uptake period (CUP), and two parameters, α and β, that describe the ratio between actual versus hypothetical maximum C sink and source, respectively. Using long-term observed NEE from 66 eddy covariance sites and global products derived from FLUXNET observations, we found that the IAV of NEE is determined predominately by MCU at the global scale, which explains 48% of the IAV of NEE on average while α, CUP, β, and MCR explain 14%, 25%, 2%, and 8%, respectively. These patterns differ in water-limited ecosystems versus temperature- and radiation-limited ecosystems; 31% of the IAV of NEE is determined by the IAV of CUP in water-limited ecosystems, and 60% of the IAV of NEE is determined by the IAV of MCU in temperature- and radiation-limited ecosystems. The Lund-Potsdam-Jena (LPJ) model and the Multi-scale Synthesis and Terrestrial Model Inter-comparison Project (MsTMIP) models underestimate the contribution of MCU to the IAV of NEE by about 18% on average, and overestimate the contribution of CUP by about 25%. This study provides a new perspective on the proximate causes of the IAV of NEE, which suggest that capturing the variability of MCU is critical for modeling the IAV of NEE across most of the global land surface.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Fu Z,Stoy PC,Poulter B,Gerken T,Zhang Z,Wakbulcho G,Niu S

doi

10.1111/gcb.14731

subject

Has Abstract

pub_date

2019-10-01 00:00:00

pages

3381-3394

issue

10

eissn

1354-1013

issn

1365-2486

journal_volume

25

pub_type

杂志文章
  • What lies beneath? Population dynamics conceal pace-of-life and sex ratio variation, with implications for resilience to environmental change.

    abstract::Life-history and pace-of-life syndrome theory predict that populations are comprised of individuals exhibiting different reproductive schedules and associated behavioural and physiological traits, optimized to prevailing social and environmental factors. Changing weather and social conditions provide in situ cues alte...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15106

    authors: Bright Ross JG,Newman C,Buesching CD,Macdonald DW

    更新日期:2020-06-01 00:00:00

  • Reproduction and seedling establishment of Picea glauca across the northernmost forest-tundra region in Canada.

    abstract::The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02769.x

    authors: Walker X,Henry GHR,McLeod K,Hofgaard A

    更新日期:2012-10-01 00:00:00

  • Is Antarctica under threat of alien species invasion?

    abstract::The last decade has seen a rapid development of scientific, logistic and tourist activities, especially in the Antarctic region with the mildest climatic conditions: the Antarctic Peninsula. This region is also exhibiting rapid regional warming and all of the already diagnosed alien species in the Antarctic Treaty Are...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15013

    authors: Chwedorzewska KJ,Korczak-Abshire M,Znój A

    更新日期:2020-01-24 00:00:00

  • Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes.

    abstract::One of the greatest current challenges to human society is ensuring adequate food production and security for a rapidly growing population under changing climatic conditions. Climate change, and specifically rising temperatures, will alter the suitability of areas for specific crops and cultivation systems. In order t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13959

    authors: Tito R,Vasconcelos HL,Feeley KJ

    更新日期:2018-02-01 00:00:00

  • Thermal affinity as the dominant factor changing Mediterranean fish abundances.

    abstract::Recent decades have seen profound changes in species abundance and community composition. In the marine environment, the major anthropogenic drivers of change comprise exploitation, invasion by nonindigenous species, and climate change. However, the magnitude of these stressors has been widely debated and we lack empi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13835

    authors: Givan O,Edelist D,Sonin O,Belmaker J

    更新日期:2018-01-01 00:00:00

  • Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2 -acidification.

    abstract::Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13987

    authors: Davis BE,Flynn EE,Miller NA,Nelson FA,Fangue NA,Todgham AE

    更新日期:2018-02-01 00:00:00

  • Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems.

    abstract::Human and natural systems have adapted to and evolved within historical climatic conditions. Anthropogenic climate change has the potential to alter these conditions such that onset of unprecedented climatic extremes will outpace evolutionary and adaptive capabilities. To assess whether and when future climate extreme...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14329

    authors: Tan X,Gan TY,Horton DE

    更新日期:2018-10-01 00:00:00

  • Carbon emissions from South-East Asian peatlands will increase despite emission-reduction schemes.

    abstract::Carbon emissions from drained peatlands converted to agriculture in South-East Asia (i.e., Peninsular Malaysia, Sumatra and Borneo) are globally significant and increasing. Here, we map the growth of South-East Asian peatland agriculture and estimate CO2 emissions due to peat drainage in relation to official land-use ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14340

    authors: Wijedasa LS,Sloan S,Page SE,Clements GR,Lupascu M,Evans TA

    更新日期:2018-10-01 00:00:00

  • Fungal community structure and function shifts with atmospheric nitrogen deposition.

    abstract::Fungal decomposition of soil organic matter depends on soil nitrogen (N) availability. This ecosystem process is being jeopardized by changes in N inputs that have resulted from a tripling of atmospheric N deposition in the last century. Soil fungi are impacted by atmospheric N deposition due to higher N availability,...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15444

    authors: Moore JAM,Anthony MA,Pec GJ,Trocha LK,Trzebny A,Geyer KM,van Diepen LTA,Frey SD

    更新日期:2020-11-07 00:00:00

  • Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes.

    abstract::Changes in peak photosynthesis timing (PPT) could substantially change the seasonality of the terrestrial carbon cycle. Spring PPT in dry regions has been documented for some individual plant species on a stand scale, but both the spatio-temporal pattern of shifting PPT on a continental scale and its determinants rema...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13224

    authors: Xu C,Liu H,Williams AP,Yin Y,Wu X

    更新日期:2016-08-01 00:00:00

  • Urban ponds as an aquatic biodiversity resource in modified landscapes.

    abstract::Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic sys...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13401

    authors: Hill MJ,Biggs J,Thornhill I,Briers RA,Gledhill DG,White JC,Wood PJ,Hassall C

    更新日期:2017-03-01 00:00:00

  • A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations.

    abstract::The tropical peat swamp forests of South-East Asia are being rapidly converted to agricultural plantations of oil palm and Acacia creating a significant global "hot-spot" for CO2 emissions. However, the effect of this major perturbation has yet to be quantified in terms of global warming potential (GWP) and the Earth'...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14400

    authors: Dommain R,Frolking S,Jeltsch-Thömmes A,Joos F,Couwenberg J,Glaser PH

    更新日期:2018-11-01 00:00:00

  • The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States.

    abstract::Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interacti...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13816

    authors: Lu X,Zhou Y,Liu Y,Le Page Y

    更新日期:2018-02-01 00:00:00

  • Nitrogen cycling microbiomes are structured by plant mycorrhizal associations with consequences for nitrogen oxide fluxes in forests.

    abstract::Volatile nitrogen oxides (N2 O, NO, NO2 , HONO, …) can negatively impact climate, air quality, and human health. Using soils collected from temperate forests across the eastern United States, we show microbial communities involved in nitrogen (N) cycling are structured, in large part, by the composition of overstory t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15439

    authors: Mushinski RM,Payne ZC,Raff JD,Craig ME,Pusede SE,Rusch DB,White JR,Phillips RP

    更新日期:2020-12-15 00:00:00

  • Climate and plant controls on soil organic matter in coastal wetlands.

    abstract::Coastal wetlands are among the most productive and carbon-rich ecosystems on Earth. Long-term carbon storage in coastal wetlands occurs primarily belowground as soil organic matter (SOM). In addition to serving as a carbon sink, SOM influences wetland ecosystem structure, function, and stability. To anticipate and mit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14376

    authors: Osland MJ,Gabler CA,Grace JB,Day RH,McCoy ML,McLeod JL,From AS,Enwright NM,Feher LC,Stagg CL,Hartley SB

    更新日期:2018-11-01 00:00:00

  • Species' traits as predictors of range shifts under contemporary climate change: A review and meta-analysis.

    abstract::A growing body of literature seeks to explain variation in range shifts using species' ecological and life-history traits, with expectations that shifts should be greater in species with greater dispersal ability, reproductive potential, and ecological generalization. Despite strong theoretical support for species' tr...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析,评审

    doi:10.1111/gcb.13736

    authors: MacLean SA,Beissinger SR

    更新日期:2017-10-01 00:00:00

  • Vegetation growth enhancement in urban environments of the Conterminous United States.

    abstract::Cities are natural laboratories for studying vegetation responses to global environmental changes because of their climate, atmospheric, and biogeochemical conditions. However, few holistic studies have been conducted on the impact of urbanization on vegetation growth. We decomposed the overall impacts of urbanization...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14317

    authors: Jia W,Zhao S,Liu S

    更新日期:2018-09-01 00:00:00

  • Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP).

    abstract::Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12412

    authors: Ruane AC,McDermid S,Rosenzweig C,Baigorria GA,Jones JW,Romero CC,Dewayne Cecil L

    更新日期:2014-02-01 00:00:00

  • Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from long-term data assimilation.

    abstract::It is critical to accurately estimate carbon (C) turnover time as it dominates the uncertainty in ecosystem C sinks and their response to future climate change. In the absence of direct observations of ecosystem C losses, C turnover times are commonly estimated under the steady state assumption (SSA), which has been a...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14547

    authors: Ge R,He H,Ren X,Zhang L,Yu G,Smallman TL,Zhou T,Yu SY,Luo Y,Xie Z,Wang S,Wang H,Zhou G,Zhang Q,Wang A,Fan Z,Zhang Y,Shen W,Yin H,Lin L

    更新日期:2019-03-01 00:00:00

  • How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change.

    abstract::Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community compositi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13847

    authors: Liang Y,Duveneck MJ,Gustafson EJ,Serra-Diaz JM,Thompson JR

    更新日期:2018-01-01 00:00:00

  • Temperature and soil fertility as regulators of tree line Scots pine growth and survival-implications for the acclimation capacity of northern populations.

    abstract::The acclimation capacity of leading edge tree populations is crucially important in a warming climate. Theoretical considerations suggest that adaptation through genetic change is needed, but this may be a slow process. Both positive and catastrophic outcomes have been predicted, while empirical studies have lagged be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13956

    authors: Rousi M,Possen BJMH,Ruotsalainen S,Silfver T,Mikola J

    更新日期:2018-02-01 00:00:00

  • Combined effects of warming and nutrients on marine communities are moderated by predators and vary across functional groups.

    abstract::Warming, nutrient enrichment and biodiversity modification are among the most pervasive components of human-induced global environmental change. We know little about their cumulative effects on ecosystems; however, even though this knowledge is fundamental to predicting and managing their consequences in a changing wo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14456

    authors: White L,Donohue I,Emmerson MC,O'Connor NE

    更新日期:2018-12-01 00:00:00

  • Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO(2) against measurements from an 11-year FACE experiment on grazed pasture.

    abstract::Ecosystem models play a crucial role in understanding and evaluating the combined impacts of rising atmospheric CO2 concentration and changing climate on terrestrial ecosystems. However, we are not aware of any studies where the capacity of models to simulate intra- and inter-annual variation in responses to elevated ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12358

    authors: Li FY,Newton PC,Lieffering M

    更新日期:2014-01-01 00:00:00

  • Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems.

    abstract::Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters infl...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.13059

    authors: Cloern JE,Abreu PC,Carstensen J,Chauvaud L,Elmgren R,Grall J,Greening H,Johansson JO,Kahru M,Sherwood ET,Xu J,Yin K

    更新日期:2016-02-01 00:00:00

  • Responses of belowground communities to large aboveground herbivores: Meta-analysis reveals biome-dependent patterns and critical research gaps.

    abstract::The importance of herbivore-plant and soil biota-plant interactions in terrestrial ecosystems is amply recognized, but the effects of aboveground herbivores on soil biota remain challenging to predict. To find global patterns in belowground responses to vertebrate herbivores, we performed a meta-analysis of studies th...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.13675

    authors: Andriuzzi WS,Wall DH

    更新日期:2017-09-01 00:00:00

  • Altered dynamics of forest recovery under a changing climate.

    abstract::Forest regeneration following disturbance is a key ecological process, influencing forest structure and function, species assemblages, and ecosystem-climate interactions. Climate change may alter forest recovery dynamics or even prevent recovery, triggering feedbacks to the climate system, altering regional biodiversi...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12194

    authors: Anderson-Teixeira KJ,Miller AD,Mohan JE,Hudiburg TW,Duval BD,Delucia EH

    更新日期:2013-07-01 00:00:00

  • Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts.

    abstract::Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological a...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12916

    authors: Frank D,Reichstein M,Bahn M,Thonicke K,Frank D,Mahecha MD,Smith P,van der Velde M,Vicca S,Babst F,Beer C,Buchmann N,Canadell JG,Ciais P,Cramer W,Ibrom A,Miglietta F,Poulter B,Rammig A,Seneviratne SI,Walz A,Watte

    更新日期:2015-08-01 00:00:00

  • Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends.

    abstract::The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net prim...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12187

    authors: Piao S,Sitch S,Ciais P,Friedlingstein P,Peylin P,Wang X,Ahlström A,Anav A,Canadell JG,Cong N,Huntingford C,Jung M,Levis S,Levy PE,Li J,Lin X,Lomas MR,Lu M,Luo Y,Ma Y,Myneni RB,Poulter B,Sun Z,Wang T,Viovy

    更新日期:2013-07-01 00:00:00

  • Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea.

    abstract::As the Earth's temperature continues to rise, coral bleaching events become more frequent. Some of the most affected reef ecosystems are located in poorly monitored waters, and thus, the extent of the damage is unknown. We propose the use of marine heatwaves (MHWs) as a new approach for detecting coral reef zones susc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14652

    authors: Genevier LGC,Jamil T,Raitsos DE,Krokos G,Hoteit I

    更新日期:2019-07-01 00:00:00

  • Tree rings provide no evidence of a CO2 fertilization effect in old-growth subalpine forests of western Canada.

    abstract::Atmospheric CO2 concentrations are now 1.7 times higher than the preindustrial values. Although photosynthetic rates are hypothesized to increase in response to rising atmospheric CO2 concentrations, results from in situ experiments are inconsistent in supporting a CO2 fertilization effect of tree growth. Tree-ring da...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14561

    authors: Hararuk O,Campbell EM,Antos JA,Parish R

    更新日期:2018-12-27 00:00:00