Climate and plant controls on soil organic matter in coastal wetlands.

Abstract:

:Coastal wetlands are among the most productive and carbon-rich ecosystems on Earth. Long-term carbon storage in coastal wetlands occurs primarily belowground as soil organic matter (SOM). In addition to serving as a carbon sink, SOM influences wetland ecosystem structure, function, and stability. To anticipate and mitigate the effects of climate change, there is a need to advance understanding of environmental controls on wetland SOM. Here, we investigated the influence of four soil formation factors: climate, biota, parent materials, and topography. Along the northern Gulf of Mexico, we collected wetland plant and soil data across elevation and zonation gradients within 10 estuaries that span broad temperature and precipitation gradients. Our results highlight the importance of climate-plant controls and indicate that the influence of elevation is scale and location dependent. Coastal wetland plants are sensitive to climate change; small changes in temperature or precipitation can transform coastal wetland plant communities. Across the region, SOM was greatest in mangrove forests and in salt marshes dominated by graminoid plants. SOM was lower in salt flats that lacked vascular plants and in salt marshes dominated by succulent plants. We quantified strong relationships between precipitation, salinity, plant productivity, and SOM. Low precipitation leads to high salinity, which limits plant productivity and appears to constrain SOM accumulation. Our analyses use data from the Gulf of Mexico, but our results can be related to coastal wetlands across the globe and provide a foundation for predicting the ecological effects of future reductions in precipitation and freshwater availability. Coastal wetlands provide many ecosystem services that are SOM dependent and highly vulnerable to climate change. Collectively, our results indicate that future changes in SOM and plant productivity, regulated by cascading effects of precipitation on freshwater availability and salinity, could impact wetland stability and affect the supply of some wetland ecosystem services.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Osland MJ,Gabler CA,Grace JB,Day RH,McCoy ML,McLeod JL,From AS,Enwright NM,Feher LC,Stagg CL,Hartley SB

doi

10.1111/gcb.14376

subject

Has Abstract

pub_date

2018-11-01 00:00:00

pages

5361-5379

issue

11

eissn

1354-1013

issn

1365-2486

journal_volume

24

pub_type

杂志文章
  • Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition.

    abstract::For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases i...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12265

    authors: Pound KL,Lawrence GB,Passy SI

    更新日期:2013-09-01 00:00:00

  • Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain but reduces soil carbon and nutrient pools.

    abstract::Arctic climate warming will be primarily during winter, resulting in increased snowfall in many regions. Previous tundra research on the impacts of deepened snow has generally been of short duration. Here, we report relatively long-term (7-9 years) effects of experimentally deepened snow on plant community structure, ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14084

    authors: Christiansen CT,Lafreniére MJ,Henry GHR,Grogan P

    更新日期:2018-08-01 00:00:00

  • Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.

    abstract::Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12598

    authors: Crase B,Liedloff A,Vesk PA,Fukuda Y,Wintle BA

    更新日期:2014-08-01 00:00:00

  • Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios.

    abstract::The combination of global and local stressors is leading to a decline in coral reef health globally. In the case of eutrophication, increased concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) are largely attributed to local land use changes. From the global perspective, increased atmospheric CO...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12035

    authors: Reymond CE,Lloyd A,Kline DI,Dove SG,Pandolfi JM

    更新日期:2013-01-01 00:00:00

  • Quantitative assessment of microbial necromass contribution to soil organic matter.

    abstract::Soil carbon transformation and sequestration have received significant interest in recent years due to a growing need for quantitating its role in mitigating climate change. Even though our understanding of the nature of soil organic matter has recently been substantially revised, fundamental uncertainty remains about...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14781

    authors: Liang C,Amelung W,Lehmann J,Kästner M

    更新日期:2019-11-01 00:00:00

  • Evapotranspiration and water yield of a pine-broadleaf forest are not altered by long-term atmospheric [CO2 ] enrichment under native or enhanced soil fertility.

    abstract::Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosy...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14363

    authors: Ward EJ,Oren R,Seok Kim H,Kim D,Tor-Ngern P,Ewers BE,McCarthy HR,Oishi AC,Pataki DE,Palmroth S,Phillips NG,Schäfer KVR

    更新日期:2018-10-01 00:00:00

  • Multiscale climate change impacts on plant diversity in the Atacama Desert.

    abstract::Comprehending ecological dynamics requires not only knowledge of modern communities but also detailed reconstructions of ecosystem history. Ancient DNA (aDNA) metabarcoding allows biodiversity responses to major climatic change to be explored at different spatial and temporal scales. We extracted aDNA preserved in fos...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14583

    authors: Díaz FP,Latorre C,Carrasco-Puga G,Wood JR,Wilmshurst JM,Soto DC,Cole TL,Gutiérrez RA

    更新日期:2019-05-01 00:00:00

  • Is Antarctica under threat of alien species invasion?

    abstract::The last decade has seen a rapid development of scientific, logistic and tourist activities, especially in the Antarctic region with the mildest climatic conditions: the Antarctic Peninsula. This region is also exhibiting rapid regional warming and all of the already diagnosed alien species in the Antarctic Treaty Are...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15013

    authors: Chwedorzewska KJ,Korczak-Abshire M,Znój A

    更新日期:2020-01-24 00:00:00

  • How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?

    abstract::Feeding 9-10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to d...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12160

    authors: Smith P,Haberl H,Popp A,Erb KH,Lauk C,Harper R,Tubiello FN,de Siqueira Pinto A,Jafari M,Sohi S,Masera O,Böttcher H,Berndes G,Bustamante M,Ahammad H,Clark H,Dong H,Elsiddig EA,Mbow C,Ravindranath NH,Rice CW,Roble

    更新日期:2013-08-01 00:00:00

  • Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    abstract::Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13545

    authors: Rofner C,Peter H,Catalán N,Drewes F,Sommaruga R,Pérez MT

    更新日期:2017-06-01 00:00:00

  • Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity.

    abstract::Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO2 accumulation are emerging, however, the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primar...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14324

    authors: Richier S,Achterberg EP,Humphreys MP,Poulton AJ,Suggett DJ,Tyrrell T,Moore CM

    更新日期:2018-09-01 00:00:00

  • Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada.

    abstract::Insects, diseases, fire and drought and other disturbances associated with global climate change contribute to forest decline and mortality in many parts of the world. Forest decline and mortality related to drought or insect outbreaks have been observed in North American aspen forests. However, little research has be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13855

    authors: Chen L,Huang JG,Dawson A,Zhai L,Stadt KJ,Comeau PG,Whitehouse C

    更新日期:2018-02-01 00:00:00

  • Greening of the earth does not compensate for rising soil heterotrophic respiration under climate change.

    abstract::Stability of the soil carbon (C) pool under decadal scale variability in temperature and precipitation is an important source of uncertainty in our understanding of land-atmosphere climate feedbacks. This depends on how two opposing C-fluxes-influx from net primary production (NPP) and efflux from heterotrophic soil r...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15531

    authors: Naidu DG,Bagchi S

    更新日期:2021-01-28 00:00:00

  • Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global meta-analysis.

    abstract::Land-use/land-cover change (LULCC) often results in degradation of natural wetlands and affects the dynamics of greenhouse gases (GHGs). However, the magnitude of changes in GHG emissions from wetlands undergoing various LULCC types remains unclear. We conducted a global meta-analysis with a database of 209 sites to e...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14933

    authors: Tan L,Ge Z,Zhou X,Li S,Li X,Tang J

    更新日期:2020-03-01 00:00:00

  • Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover.

    abstract::Microbial-derived nitrogen (N) is now recognized as an important source of soil organic N. However, the mechanisms that govern the production of microbial necromass N, its turnover, and stabilization in soil remain poorly understood. To assess the effects of elevated temperature on bacterial and fungal necromass N pro...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15206

    authors: Wang X,Wang C,Cotrufo MF,Sun L,Jiang P,Liu Z,Bai E

    更新日期:2020-09-01 00:00:00

  • Microclimatic challenges in global change biology.

    abstract::Despite decades of work on climate change biology, the scientific community remains uncertain about where and when most species distributions will respond to altered climates. A major barrier is the spatial mismatch between the size of organisms and the scale at which climate data are collected and modeled. Using a me...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12257

    authors: Potter KA,Arthur Woods H,Pincebourde S

    更新日期:2013-10-01 00:00:00

  • Continuous soil carbon storage of old permanent pastures in Amazonia.

    abstract::Amazonian forests continuously accumulate carbon (C) in biomass and in soil, representing a carbon sink of 0.42-0.65 GtC yr-1 . In recent decades, more than 15% of Amazonian forests have been converted into pastures, resulting in net C emissions (~200 tC ha-1 ) due to biomass burning and litter mineralization in the f...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13573

    authors: Stahl C,Fontaine S,Klumpp K,Picon-Cochard C,Grise MM,Dezécache C,Ponchant L,Freycon V,Blanc L,Bonal D,Burban B,Soussana JF,Blanfort V

    更新日期:2017-08-01 00:00:00

  • Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts.

    abstract::In the face of increasing cumulative effects from human and natural disturbances, sustaining coral reefs will require a deeper understanding of the drivers of coral resilience in space and time. Here we develop a high-resolution, spatially explicit model of coral dynamics on Australia's Great Barrier Reef (GBR). Our m...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14625

    authors: Mellin C,Matthews S,Anthony KRN,Brown SC,Caley MJ,Johns KA,Osborne K,Puotinen M,Thompson A,Wolff NH,Fordham DA,MacNeil MA

    更新日期:2019-07-01 00:00:00

  • Soil properties and sediment accretion modulate methane fluxes from restored wetlands.

    abstract::Wetlands are the largest source of methane (CH4 ) globally, yet our understanding of how process-level controls scale to ecosystem fluxes remains limited. It is particularly uncertain how variable soil properties influence ecosystem CH4 emissions on annual time scales. We measured ecosystem carbon dioxide (CO2 ) and C...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14124

    authors: Chamberlain SD,Anthony TL,Silver WL,Eichelmann E,Hemes KS,Oikawa PY,Sturtevant C,Szutu DJ,Verfaillie JG,Baldocchi DD

    更新日期:2018-09-01 00:00:00

  • Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing.

    abstract::One widely documented phenological response to climate change is the earlier occurrence of spring-breeding events. While such climate change-driven shifts in phenology are common, their consequences for individuals and populations have rarely been investigated. I addressed this gap in our knowledge by using a multi-ye...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12720

    authors: Benard MF

    更新日期:2015-03-01 00:00:00

  • Impacts of climate and land use on N2 O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania.

    abstract::In this study, we quantify the impacts of climate and land use on soil N2 O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land-use gradients at Mt. Kilimanjaro, combining long-...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13944

    authors: Gütlein A,Gerschlauer F,Kikoti I,Kiese R

    更新日期:2018-03-01 00:00:00

  • Future habitat suitability for coral reef ecosystems under global warming and ocean acidification.

    abstract::Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12335

    authors: Couce E,Ridgwell A,Hendy EJ

    更新日期:2013-12-01 00:00:00

  • The influence of historical climate changes on Southern Ocean marine predator populations: a comparative analysis.

    abstract::The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher-order predators. Here, we compare the long-term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundanc...

    journal_title:Global change biology

    pub_type: 历史文章,杂志文章,评审

    doi:10.1111/gcb.13104

    authors: Younger JL,Emmerson LM,Miller KJ

    更新日期:2016-02-01 00:00:00

  • Nitrogen deposition and warming - effects on phytoplankton nutrient limitation in subarctic lakes.

    abstract::The aim of this study was to predict the combined effects of enhanced nitrogen (N) deposition and warming on phytoplankton development in high latitude and mountain lakes. Consequently, we assessed, in a series of enclosure experiments, how lake water nutrient stoichiometry and phytoplankton nutrient limitation varied...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12234

    authors: Bergström AK,Faithfull C,Karlsson D,Karlsson J

    更新日期:2013-08-01 00:00:00

  • Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes.

    abstract::The advent of genomic-, transcriptomic- and proteomic-based approaches has revolutionized our ability to describe marine microbial communities, including biogeography, metabolic potential and diversity, mechanisms of adaptation, and phylogeny and evolutionary history. New interdisciplinary approaches are needed to mov...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12983

    authors: Mock T,Daines SJ,Geider R,Collins S,Metodiev M,Millar AJ,Moulton V,Lenton TM

    更新日期:2016-01-01 00:00:00

  • Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields?

    abstract::In rice cultivation, there are controversial reports on net impacts of nitrogen (N) fertilizers on methane (CH 4 ) emissions. Nitrogen fertilizers increase crop growth as well as alter CH 4 producing (Methanogens) and consuming (Methanotrophs) microbes, and thereby produce complex effects on CH 4 emissions. Objectives...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02762.x

    authors: Banger K,Tian H,Lu C

    更新日期:2012-10-01 00:00:00

  • A big-microsite framework for soil carbon modeling.

    abstract::Soil carbon cycling processes potentially play a large role in biotic feedbacks to climate change, but little agreement exists at present on what the core of numerical soil C cycling models should look like. In contrast, most canopy models of photosynthesis and leaf gas exchange share a common 'Farquhaur-model' core s...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12718

    authors: Davidson EA,Savage KE,Finzi AC

    更新日期:2014-12-01 00:00:00

  • Ecosystem size structure response to 21st century climate projection: large fish abundance decreases in the central North Pacific and increases in the California Current.

    abstract::Output from an earth system model is paired with a size-based food web model to investigate the effects of climate change on the abundance of large fish over the 21st century. The earth system model, forced by the Intergovernmental Panel on Climate Change (IPCC) Special report on emission scenario A2, combines a coupl...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12076

    authors: Woodworth-Jefcoats PA,Polovina JJ,Dunne JP,Blanchard JL

    更新日期:2013-03-01 00:00:00

  • Mortality events resulting from Australia's catastrophic fires threaten aquatic biota.

    abstract::The consequences of the 2019-2020 bushfires in Australia were also devastating for the aquatic biota. Following abnormal rainfall events in burnt areas, widespread mortality events including fish and invertebrates were recorded in estuarine and freshwater systems. Such negative impacts on aquatic resources highlight t...

    journal_title:Global change biology

    pub_type: 信件

    doi:10.1111/gcb.15282

    authors: Silva LGM,Doyle KE,Duffy D,Humphries P,Horta A,Baumgartner LJ

    更新日期:2020-10-01 00:00:00

  • Methane emission from global livestock sector during 1890-2014: Magnitude, trends and spatiotemporal patterns.

    abstract::Human demand for livestock products has increased rapidly during the past few decades largely due to dietary transition and population growth, with significant impact on climate and the environment. The contribution of ruminant livestock to greenhouse gas (GHG) emissions has been investigated extensively at various sc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13709

    authors: Dangal SRS,Tian H,Zhang B,Pan S,Lu C,Yang J

    更新日期:2017-10-01 00:00:00