Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover.

Abstract:

:Microbial-derived nitrogen (N) is now recognized as an important source of soil organic N. However, the mechanisms that govern the production of microbial necromass N, its turnover, and stabilization in soil remain poorly understood. To assess the effects of elevated temperature on bacterial and fungal necromass N production, turnover, and stabilization, we incubated 15 N-labeled bacterial and fungal necromass under optimum moisture conditions at 10°C, 15°C, and 25°C. We developed a new 15 N tracing model to calculate the production and mineralization rates of necromass N. Our results showed that bacterial and fungal necromass N had similar mineralization rates, despite their contrasting chemistry. Most bacterial and fungal necromass 15 N was recovered in the mineral-associated organic matter fraction through microbial anabolism, suggesting that mineral association plays an important role in stabilizing necromass N in soil, independently of necromass chemistry. Elevated temperature significantly increased the accumulation of necromass N in soil, due to the relatively higher microbial turnover and production of necromass N with increasing temperature than the increases in microbial necromass N mineralization. In conclusion, we found elevated temperature may increase the contribution of microbial necromass N to mineral-stabilized soil organic N.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Wang X,Wang C,Cotrufo MF,Sun L,Jiang P,Liu Z,Bai E

doi

10.1111/gcb.15206

subject

Has Abstract

pub_date

2020-09-01 00:00:00

pages

5277-5289

issue

9

eissn

1354-1013

issn

1365-2486

journal_volume

26

pub_type

杂志文章
  • Land use for animal production in global change studies: Defining and characterizing a framework.

    abstract::Land use for animal production influences the earth system in a variety of ways, including local-scale modification to biodiversity, soils, and nutrient cycling; regional changes in albedo and hydrology; and global-scale changes in greenhouse gas and aerosol concentrations. Pasture is furthermore the single most exten...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13732

    authors: Phelps LN,Kaplan JO

    更新日期:2017-11-01 00:00:00

  • What lies beneath? Population dynamics conceal pace-of-life and sex ratio variation, with implications for resilience to environmental change.

    abstract::Life-history and pace-of-life syndrome theory predict that populations are comprised of individuals exhibiting different reproductive schedules and associated behavioural and physiological traits, optimized to prevailing social and environmental factors. Changing weather and social conditions provide in situ cues alte...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15106

    authors: Bright Ross JG,Newman C,Buesching CD,Macdonald DW

    更新日期:2020-06-01 00:00:00

  • Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests.

    abstract::Secondary forests (SFs) regenerating on previously deforested land account for large, expanding areas of tropical forest cover. Given that tropical forests rank among Earth's most important reservoirs of carbon and biodiversity, SFs play an increasingly pivotal role in the carbon cycle and as potential habitat for for...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14443

    authors: Lennox GD,Gardner TA,Thomson JR,Ferreira J,Berenguer E,Lees AC,Mac Nally R,Aragão LEOC,Ferraz SFB,Louzada J,Moura NG,Oliveira VHF,Pardini R,Solar RRC,Vaz-de Mello FZ,Vieira ICG,Barlow J

    更新日期:2018-12-01 00:00:00

  • Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.

    abstract::Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature-induced drought stress. However, variations in tree growth alone do not revea...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12893

    authors: Walker XJ,Mack MC,Johnstone JF

    更新日期:2015-08-01 00:00:00

  • Deep soil flipping increases carbon stocks of New Zealand grasslands.

    abstract::Sequestration of soil organic carbon (SOC) has been recognized as an opportunity to off-set global carbon dioxide (CO2 ) emissions. Flipping (full inversion to 1-3 m) is a practice used on New Zealand's South Island West Coast to eliminate water-logging in highly podzolized sandy soils. Flipping results in burial of S...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14588

    authors: Schiedung M,Tregurtha CS,Beare MH,Thomas SM,Don A

    更新日期:2019-07-01 00:00:00

  • Challenging a 15-year-old claim: The North Atlantic Oscillation index as a predictor of spring migration phenology of birds.

    abstract::Many migrant bird species that breed in the Northern Hemisphere show advancement in spring arrival dates. The North Atlantic Oscillation (NAO) index is one of the climatic variables that have been most often investigated and shown to be correlated with these changes in spring arrival. Although the NAO is often claimed...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14023

    authors: Haest B,Hüppop O,Bairlein F

    更新日期:2018-04-01 00:00:00

  • Nitrogen deposition and warming - effects on phytoplankton nutrient limitation in subarctic lakes.

    abstract::The aim of this study was to predict the combined effects of enhanced nitrogen (N) deposition and warming on phytoplankton development in high latitude and mountain lakes. Consequently, we assessed, in a series of enclosure experiments, how lake water nutrient stoichiometry and phytoplankton nutrient limitation varied...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12234

    authors: Bergström AK,Faithfull C,Karlsson D,Karlsson J

    更新日期:2013-08-01 00:00:00

  • Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.

    abstract::Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, month...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13418

    authors: Rousk K,Michelsen A

    更新日期:2017-04-01 00:00:00

  • Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments.

    abstract::Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless, in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg(-1) ) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic communi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12109

    authors: Thomsen J,Casties I,Pansch C,Körtzinger A,Melzner F

    更新日期:2013-04-01 00:00:00

  • Marine-terminating glaciers sustain high productivity in Greenland fjords.

    abstract::Accelerated mass loss from the Greenland ice sheet leads to glacier retreat and an increasing input of glacial meltwater to the fjords and coastal waters around Greenland. These high latitude ecosystems are highly productive and sustain important fisheries, yet it remains uncertain how they will respond to future chan...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13801

    authors: Meire L,Mortensen J,Meire P,Juul-Pedersen T,Sejr MK,Rysgaard S,Nygaard R,Huybrechts P,Meysman FJR

    更新日期:2017-12-01 00:00:00

  • Testing for changes in biomass dynamics in large-scale forest datasets.

    abstract::Tropical forest responses to climate and atmospheric change are critical to the future of the global carbon budget. Recent studies have reported increases in estimated above-ground biomass (EAGB) stocks, productivity, and mortality in old-growth tropical forests. These increases could reflect a shift in forest functio...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14833

    authors: Rutishauser E,Wright SJ,Condit R,Hubbell SP,Davies SJ,Muller-Landau HC

    更新日期:2020-03-01 00:00:00

  • Interactive climate factors restrict future increases in spring productivity of temperate and boreal trees.

    abstract::Climate warming is currently advancing spring leaf-out of temperate and boreal trees, enhancing net primary productivity (NPP) of forests. However, it remains unclear whether this trend will continue, preventing for accurate projections of ecosystem functioning and climate feedbacks. Several ecophysiological mechanism...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15098

    authors: Zohner CM,Mo L,Pugh TAM,Bastin JF,Crowther TW

    更新日期:2020-07-01 00:00:00

  • Acidification effects on biofouling communities: winners and losers.

    abstract::How ocean acidification affects marine life is a major concern for science and society. However, its impacts on encrusting biofouling communities, that are both the initial colonizers of hard substrata and of great economic importance, are almost unknown. We showed that community composition changed significantly, fro...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12841

    authors: Peck LS,Clark MS,Power D,Reis J,Batista FM,Harper EM

    更新日期:2015-05-01 00:00:00

  • Can carbon emissions from tropical deforestation drop by 50% in 5 years?

    abstract::Halving carbon emissions from tropical deforestation by 2020 could help bring the international community closer to the agreed goal of <2 degree increase in global average temperature change and is consistent with a target set last year by the governments, corporations, indigenous peoples' organizations and non-govern...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13153

    authors: Zarin DJ,Harris NL,Baccini A,Aksenov D,Hansen MC,Azevedo-Ramos C,Azevedo T,Margono BA,Alencar AC,Gabris C,Allegretti A,Potapov P,Farina M,Walker WS,Shevade VS,Loboda TV,Turubanova S,Tyukavina A

    更新日期:2016-04-01 00:00:00

  • Multiple axes of ecological vulnerability to climate change.

    abstract::Observed ecological responses to climate change are highly individualistic across species and locations, and understanding the drivers of this variability is essential for management and conservation efforts. While it is clear that differences in exposure, sensitivity, and adaptive capacity all contribute to heterogen...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15008

    authors: Kling MM,Auer SL,Comer PJ,Ackerly DD,Hamilton H

    更新日期:2020-05-01 00:00:00

  • Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes.

    abstract::One of the greatest current challenges to human society is ensuring adequate food production and security for a rapidly growing population under changing climatic conditions. Climate change, and specifically rising temperatures, will alter the suitability of areas for specific crops and cultivation systems. In order t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13959

    authors: Tito R,Vasconcelos HL,Feeley KJ

    更新日期:2018-02-01 00:00:00

  • Application of a two-pool model to soil carbon dynamics under elevated CO2.

    abstract::Elevated atmospheric CO2 concentrations increase plant productivity and affect soil microbial communities, with possible consequences for the turnover rate of soil carbon (C) pools and feedbacks to the atmosphere. In a previous analysis (Van Groenigen et al., 2014), we used experimental data to inform a one-pool model...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13074

    authors: van Groenigen KJ,Xia J,Osenberg CW,Luo Y,Hungate BA

    更新日期:2015-12-01 00:00:00

  • Finding middle ground: Extending conservation beyond wilderness areas.

    abstract::We show that because of methodological improvements, the human modification map detects higher levels of land modification and is more accurate than the human footprint map across the gradient of modification globally. While we agree that protecting the world's least modified lands or wildlands is essential for conser...

    journal_title:Global change biology

    pub_type: 评论,信件

    doi:10.1111/gcb.14900

    authors: Kennedy CM,Oakleaf JR,Baruch-Mordo S,Theobald DM,Kiesecker J

    更新日期:2020-02-01 00:00:00

  • Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050.

    abstract::In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature-dependent transmission model for ZIKV t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15384

    authors: Ryan SJ,Carlson CJ,Tesla B,Bonds MH,Ngonghala CN,Mordecai EA,Johnson LR,Murdock CC

    更新日期:2021-01-01 00:00:00

  • Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity.

    abstract::Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO2 accumulation are emerging, however, the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primar...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14324

    authors: Richier S,Achterberg EP,Humphreys MP,Poulton AJ,Suggett DJ,Tyrrell T,Moore CM

    更新日期:2018-09-01 00:00:00

  • Greening of the earth does not compensate for rising soil heterotrophic respiration under climate change.

    abstract::Stability of the soil carbon (C) pool under decadal scale variability in temperature and precipitation is an important source of uncertainty in our understanding of land-atmosphere climate feedbacks. This depends on how two opposing C-fluxes-influx from net primary production (NPP) and efflux from heterotrophic soil r...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15531

    authors: Naidu DG,Bagchi S

    更新日期:2021-01-28 00:00:00

  • Upslope development of a tidal marsh as a function of upland land use.

    abstract::To thrive in a time of rapid sea-level rise, tidal marshes will need to migrate upslope into adjacent uplands. Yet little is known about the mechanics of this process, especially in urbanized estuaries, where the adjacent upland is likely to be a mowed lawn rather than a wooded natural area. We studied marsh migration...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13398

    authors: Anisfeld SC,Cooper KR,Kemp AC

    更新日期:2017-02-01 00:00:00

  • How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?

    abstract::Feeding 9-10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to d...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12160

    authors: Smith P,Haberl H,Popp A,Erb KH,Lauk C,Harper R,Tubiello FN,de Siqueira Pinto A,Jafari M,Sohi S,Masera O,Böttcher H,Berndes G,Bustamante M,Ahammad H,Clark H,Dong H,Elsiddig EA,Mbow C,Ravindranath NH,Rice CW,Roble

    更新日期:2013-08-01 00:00:00

  • Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic.

    abstract::Climate warming is occurring at an unprecedented rate in the Arctic and is having profound effects on host-parasite interactions, including range expansion. Recently, two species of protostrongylid nematodes have emerged for the first time in muskoxen and caribou on Victoria Island in the western Canadian Arctic Archi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12315

    authors: Kutz SJ,Checkley S,Verocai GG,Dumond M,Hoberg EP,Peacock R,Wu JP,Orsel K,Seegers K,Warren AL,Abrams A

    更新日期:2013-11-01 00:00:00

  • Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review.

    abstract::Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14102

    authors: Boyd PW,Collins S,Dupont S,Fabricius K,Gattuso JP,Havenhand J,Hutchins DA,Riebesell U,Rintoul MS,Vichi M,Biswas H,Ciotti A,Gao K,Gehlen M,Hurd CL,Kurihara H,McGraw CM,Navarro JM,Nilsson GE,Passow U,Pörtner HO

    更新日期:2018-06-01 00:00:00

  • Global environmental changes: setting priorities for Latin American coastal habitats.

    abstract::As the effects of the Global Climate Changes on the costal regions of Central and South Americas advance, there is proportionally little research being made to understand such impacts. This commentary puts forward a series of propositions of strategies to improve performance of Central and South American science and p...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12186

    authors: Turra A,Cróquer A,Carranza A,Mansilla A,Areces AJ,Werlinger C,Martínez-Bayón C,Nassar CA,Plastino E,Schwindt E,Scarabino F,Chow F,Figueroa FL,Berchez F,Hall-Spencer JM,Soto LA,Buckeridge MS,Copertino MS,de Széchy MT,

    更新日期:2013-07-01 00:00:00

  • Low phosphorus supply constrains plant responses to elevated CO2 : A meta-analysis.

    abstract::Phosphorus (P) is an essential macro-nutrient required for plant metabolism and growth. Low P availability could potentially limit plant responses to elevated carbon dioxide (eCO2 ), but consensus has yet to be reached on the extent of this limitation. Here, based on data from experiments that manipulated both CO2 and...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.15277

    authors: Jiang M,Caldararu S,Zhang H,Fleischer K,Crous KY,Yang J,De Kauwe MG,Ellsworth DS,Reich PB,Tissue DT,Zaehle S,Medlyn BE

    更新日期:2020-10-01 00:00:00

  • Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    abstract::Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13545

    authors: Rofner C,Peter H,Catalán N,Drewes F,Sommaruga R,Pérez MT

    更新日期:2017-06-01 00:00:00

  • Global environmental changes impact soil hydraulic functions through biophysical feedbacks.

    abstract::Although only representing 0.05% of global freshwater, or 0.001% of all global water, soil water supports all terrestrial biological life. Soil moisture behaviour in most models is constrained by hydraulic parameters that do not change. Here we argue that biological feedbacks from plants, macro-fauna and the microbiom...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14626

    authors: Robinson DA,Hopmans JW,Filipovic V,van der Ploeg M,Lebron I,Jones SB,Reinsch S,Jarvis N,Tuller M

    更新日期:2019-06-01 00:00:00

  • Temperatures and the growth and development of maize and rice: a review.

    abstract::Because of global land surface warming, extreme temperature events are expected to occur more often and more intensely, affecting the growth and development of the major cereal crops in several ways, thus affecting the production component of food security. In this study, we have identified rice and maize crop respons...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12389

    authors: Sánchez B,Rasmussen A,Porter JR

    更新日期:2014-02-01 00:00:00