Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments.

Abstract:

:Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless, in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg(-1) ) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic community. In a coupled field and laboratory study we examined the annual pCO2 variability in this habitat and the combined effects of elevated pCO2 and food availability on juvenile M. edulis growth and calcification. In the laboratory experiment, mussel growth and calcification were found to chiefly depend on food supply, with only minor impacts of pCO2 up to 3350 μatm. Kiel Fjord was characterized by strong seasonal pCO2 variability. During summer, maximal pCO2 values of 2500 μatm were observed at the surface and >3000 μatm at the bottom. However, the field growth experiment revealed seven times higher growth and calcification rates of M. edulis at a high pCO2 inner fjord field station (mean pCO2 ca. 1000 μatm) in comparison to a low pCO2 outer fjord station (ca. 600 μatm). In addition, mussels were able to out-compete the barnacle Amphibalanus improvisus at the high pCO2 site. High mussel productivity at the inner fjord site was enabled by higher particulate organic carbon concentrations. Kiel Fjord is highly impacted by eutrophication, which causes bottom water hypoxia and consequently high seawater pCO2 . At the same time, elevated nutrient concentrations increase the energy availability for filter feeding organisms such as mussels. Thus, M. edulis can dominate over a seemingly more acidification resistant species such as A. improvisus. We conclude that benthic stages of M. edulis tolerate high ambient pCO2 when food supply is abundant and that important habitat characteristics such as species interactions and energy availability need to be considered to predict species vulnerability to ocean acidification.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Thomsen J,Casties I,Pansch C,Körtzinger A,Melzner F

doi

10.1111/gcb.12109

subject

Has Abstract

pub_date

2013-04-01 00:00:00

pages

1017-27

issue

4

eissn

1354-1013

issn

1365-2486

journal_volume

19

pub_type

杂志文章
  • Crop connectivity under climate change: future environmental and geographic risks of potato late blight in Scotland.

    abstract::The impact of climate change on dispersal processes is largely ignored in risk assessments for crop diseases, as inoculum is generally assumed to be ubiquitous and nonlimiting. We suggest that consideration of the impact of climate change on the connectivity of crops for inoculum transmission may provide additional ex...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13368

    authors: Skelsey P,Cooke DE,Lynott JS,Lees AK

    更新日期:2016-11-01 00:00:00

  • Temperatures and the growth and development of maize and rice: a review.

    abstract::Because of global land surface warming, extreme temperature events are expected to occur more often and more intensely, affecting the growth and development of the major cereal crops in several ways, thus affecting the production component of food security. In this study, we have identified rice and maize crop respons...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12389

    authors: Sánchez B,Rasmussen A,Porter JR

    更新日期:2014-02-01 00:00:00

  • Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.

    abstract::Phenological events, such as bud burst, are strongly linked to ecosystem processes in temperate deciduous forests. However, the exact nature and magnitude of how seasonal and interannual variation in air temperatures influence phenology is poorly understood, and model-based phenology representations fail to capture lo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13122

    authors: Melaas EK,Friedl MA,Richardson AD

    更新日期:2016-02-01 00:00:00

  • Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic.

    abstract::Arctic warming is resulting in reduced snow cover and increased shrub growth, both of which have been associated with altered land surface-atmospheric feedback processes involving sensible heat flux, ground heat flux and biogeochemical cycling. Using field measurements, we show that two common Arctic shrub species (Be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13297

    authors: Williamson SN,Barrio IC,Hik DS,Gamon JA

    更新日期:2016-11-01 00:00:00

  • Challenging a 15-year-old claim: The North Atlantic Oscillation index as a predictor of spring migration phenology of birds.

    abstract::Many migrant bird species that breed in the Northern Hemisphere show advancement in spring arrival dates. The North Atlantic Oscillation (NAO) index is one of the climatic variables that have been most often investigated and shown to be correlated with these changes in spring arrival. Although the NAO is often claimed...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14023

    authors: Haest B,Hüppop O,Bairlein F

    更新日期:2018-04-01 00:00:00

  • Global environmental changes: setting priorities for Latin American coastal habitats.

    abstract::As the effects of the Global Climate Changes on the costal regions of Central and South Americas advance, there is proportionally little research being made to understand such impacts. This commentary puts forward a series of propositions of strategies to improve performance of Central and South American science and p...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12186

    authors: Turra A,Cróquer A,Carranza A,Mansilla A,Areces AJ,Werlinger C,Martínez-Bayón C,Nassar CA,Plastino E,Schwindt E,Scarabino F,Chow F,Figueroa FL,Berchez F,Hall-Spencer JM,Soto LA,Buckeridge MS,Copertino MS,de Széchy MT,

    更新日期:2013-07-01 00:00:00

  • The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance.

    abstract::Global change is affecting terrestrial carbon (C) balances. The effect of climate on ecosystem C balance has been largely explored, but the roles of other concurrently changing factors, such as diversity and nutrient availability, remain elusive. We used eddy-covariance C-flux measurements from 62 ecosystems from whic...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15385

    authors: Fernández-Martínez M,Sardans J,Musavi T,Migliavacca M,Iturrate-Garcia M,Scholes RJ,Peñuelas J,Janssens IA

    更新日期:2020-12-01 00:00:00

  • A review of global potentially available cropland estimates and their consequences for model-based assessments.

    abstract::The world's population is growing and demand for food, feed, fiber, and fuel is increasing, placing greater demand on land and its resources for crop production. We review previously published estimates of global scale cropland availability, discuss the underlying assumptions that lead to differences between estimates...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12733

    authors: Eitelberg DA,van Vliet J,Verburg PH

    更新日期:2015-03-01 00:00:00

  • Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types.

    abstract::The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dy...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13487

    authors: Acácio V,Dias FS,Catry FX,Rocha M,Moreira F

    更新日期:2017-03-01 00:00:00

  • Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends.

    abstract::The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net prim...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12187

    authors: Piao S,Sitch S,Ciais P,Friedlingstein P,Peylin P,Wang X,Ahlström A,Anav A,Canadell JG,Cong N,Huntingford C,Jung M,Levis S,Levy PE,Li J,Lin X,Lomas MR,Lu M,Luo Y,Ma Y,Myneni RB,Poulter B,Sun Z,Wang T,Viovy

    更新日期:2013-07-01 00:00:00

  • Disentangling how climate change can affect an aquatic food web by combining multiple experimental approaches.

    abstract::Predicting the biological effects of climate change presents major challenges due to the interplay of potential biotic and abiotic mechanisms. Climate change can create unexpected outcomes by altering species interactions, and uncertainty over the ability of species to develop in situ tolerance or track environmental ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14717

    authors: Amundrud SL,Srivastava DS

    更新日期:2019-10-01 00:00:00

  • Life history consequences of developing in anthropogenic noise.

    abstract::When environments change rapidly, adaptive phenotypic plasticity can ameliorate negative effects of environmental change on survival and reproduction. Recent evidence suggests, however, that plastic responses to human-induced environmental change are often maladaptive or insufficient to overcome novel selection pressu...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14610

    authors: Gurule-Small GA,Tinghitella RM

    更新日期:2019-06-01 00:00:00

  • Points of view matter when assessing biodiversity vulnerability to environmental changes.

    abstract::We can expect different levels of vulnerability depending on the paradigm used to determine the mechanisms that will alter biodiversity under climate change. A multi-paradigm perspective is necessary to get the full picture of biodiversity vulnerability. This is a commentary on Kling et al., 26, 2798-2813. ...

    journal_title:Global change biology

    pub_type: 评论,杂志文章

    doi:10.1111/gcb.15054

    authors: Ordonez A

    更新日期:2020-05-01 00:00:00

  • Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover.

    abstract::Microbial-derived nitrogen (N) is now recognized as an important source of soil organic N. However, the mechanisms that govern the production of microbial necromass N, its turnover, and stabilization in soil remain poorly understood. To assess the effects of elevated temperature on bacterial and fungal necromass N pro...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15206

    authors: Wang X,Wang C,Cotrufo MF,Sun L,Jiang P,Liu Z,Bai E

    更新日期:2020-09-01 00:00:00

  • Anthropogenic noise compromises antipredator behaviour in European eels.

    abstract::Increases in noise-generating human activities since the Industrial Revolution have changed the acoustic landscape of many terrestrial and aquatic ecosystems. Anthropogenic noise is now recognized as a major pollutant of international concern, and recent studies have demonstrated impacts on, for instance, hearing thre...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12685

    authors: Simpson SD,Purser J,Radford AN

    更新日期:2015-02-01 00:00:00

  • Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts.

    abstract::Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological a...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12916

    authors: Frank D,Reichstein M,Bahn M,Thonicke K,Frank D,Mahecha MD,Smith P,van der Velde M,Vicca S,Babst F,Beer C,Buchmann N,Canadell JG,Ciais P,Cramer W,Ibrom A,Miglietta F,Poulter B,Rammig A,Seneviratne SI,Walz A,Watte

    更新日期:2015-08-01 00:00:00

  • Native and exotic plant cover vary inversely along a climate gradient 11 years following stand-replacing wildfire in a dry coniferous forest, Oregon, USA.

    abstract::Community re-assembly following future disturbances will often occur under warmer and more moisture-limited conditions than when current communities assembled. Because the establishment stage is regularly the most sensitive to climate and competition, the trajectory of recovery from disturbance in a changing environme...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12775

    authors: Dodson EK,Root HT

    更新日期:2015-02-01 00:00:00

  • 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation?

    abstract::Free-air CO2 enrichment (FACE) allows open-air elevation of [CO2 ] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta-analysis. Subsequent studies have combine...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.15375

    authors: Ainsworth EA,Long SP

    更新日期:2021-01-01 00:00:00

  • Impacts of climate and land use on N2 O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania.

    abstract::In this study, we quantify the impacts of climate and land use on soil N2 O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land-use gradients at Mt. Kilimanjaro, combining long-...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13944

    authors: Gütlein A,Gerschlauer F,Kikoti I,Kiese R

    更新日期:2018-03-01 00:00:00

  • Climatic changes can drive the loss of genetic diversity in a Neotropical savanna tree species.

    abstract::The high rates of future climatic changes, compared with the rates reported for past changes, may hamper species adaptation to new climates or the tracking of suitable conditions, resulting in significant loss of genetic diversity. Trees are dominant species in many biomes and because they are long-lived, they may not...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13685

    authors: Lima JS,Ballesteros-Mejia L,Lima-Ribeiro MS,Collevatti RG

    更新日期:2017-11-01 00:00:00

  • How ecologists define drought, and why we should do better.

    abstract::Drought, widely studied as an important driver of ecosystem dynamics, is predicted to increase in frequency and severity globally. To study drought, ecologists must define or at least operationalize what constitutes a drought. How this is accomplished in practice is unclear, particularly given that climatologists have...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14747

    authors: Slette IJ,Post AK,Awad M,Even T,Punzalan A,Williams S,Smith MD,Knapp AK

    更新日期:2019-10-01 00:00:00

  • Non-linearities in bird responses across urbanization gradients: A meta-analysis.

    abstract::Urbanization is one of the most extreme forms of environmental alteration, posing a major threat to biodiversity. We studied the effects of urbanization on avian communities via a systematic review using hierarchical and categorical meta-analyses. Altogether, we found 42 observations from 37 case studies for species r...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.13964

    authors: Batáry P,Kurucz K,Suarez-Rubio M,Chamberlain DE

    更新日期:2018-03-01 00:00:00

  • Limited effect of ozone reductions on the 20-year photosynthesis trend at Harvard forest.

    abstract::Ozone (O3 ) damage to leaves can reduce plant photosynthesis, which suggests that declines in ambient O3 concentrations ([O3 ]) in the United States may have helped increase gross primary production (GPP) in recent decades. Here, we assess the effect of long-term changes in ambient [O3 ] using 20 years of observations...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13300

    authors: Yue X,Keenan TF,Munger W,Unger N

    更新日期:2016-11-01 00:00:00

  • Predicting shifts in parasite distribution with climate change: a multitrophic level approach.

    abstract::Climate change likely will lead to increasingly favourable environmental conditions for many parasites. However, predictions regarding parasitism's impacts often fail to account for the likely variability in host distribution and how this may alter parasite occurrence. Here, we investigate potential distributional shi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12255

    authors: Pickles RS,Thornton D,Feldman R,Marques A,Murray DL

    更新日期:2013-09-01 00:00:00

  • How much does climate change threaten European forest tree species distributions?

    abstract::Although numerous species distribution models have been developed, most were based on insufficient distribution data or used older climate change scenarios. We aimed to quantify changes in projected ranges and threat level by the years 2061-2080, for 12 European forest tree species under three climate change scenarios...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13925

    authors: Dyderski MK,Paź S,Frelich LE,Jagodziński AM

    更新日期:2018-03-01 00:00:00

  • The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States.

    abstract::Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interacti...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13816

    authors: Lu X,Zhou Y,Liu Y,Le Page Y

    更新日期:2018-02-01 00:00:00

  • Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community.

    abstract::Summer temperature on the Cape Churchill Peninsula (Manitoba, Canada) has increased rapidly over the past 75 years, and flowering phenology of the plant community is advanced in years with warmer temperatures (higher cumulative growing degree days). Despite this, there has been no overall shift in flowering phenology ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13386

    authors: Mulder CP,Iles DT,Rockwell RF

    更新日期:2017-02-01 00:00:00

  • Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review.

    abstract::Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14102

    authors: Boyd PW,Collins S,Dupont S,Fabricius K,Gattuso JP,Havenhand J,Hutchins DA,Riebesell U,Rintoul MS,Vichi M,Biswas H,Ciotti A,Gao K,Gehlen M,Hurd CL,Kurihara H,McGraw CM,Navarro JM,Nilsson GE,Passow U,Pörtner HO

    更新日期:2018-06-01 00:00:00

  • Plant diversity loss reduces soil respiration across terrestrial ecosystems.

    abstract::The rapid global biodiversity loss has led to the decline in ecosystem function. Despite the critical importance of soil respiration (Rs) in the global carbon and nutrient cycles, how plant diversity loss affects Rs remains uncertain. Here we present a meta-analysis using 446 paired observations from 95 published stud...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14567

    authors: Chen X,Chen HYH

    更新日期:2019-01-06 00:00:00

  • Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes.

    abstract::The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological resp...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15273

    authors: Beas-Luna R,Micheli F,Woodson CB,Carr M,Malone D,Torre J,Boch C,Caselle JE,Edwards M,Freiwald J,Hamilton SL,Hernandez A,Konar B,Kroeker KJ,Lorda J,Montaño-Moctezuma G,Torres-Moye G

    更新日期:2020-09-09 00:00:00