Acidification effects on biofouling communities: winners and losers.

Abstract:

:How ocean acidification affects marine life is a major concern for science and society. However, its impacts on encrusting biofouling communities, that are both the initial colonizers of hard substrata and of great economic importance, are almost unknown. We showed that community composition changed significantly, from 92% spirorbids, 3% ascidians and 4% sponges initially to 47% spirorbids, 23% ascidians and 29% sponges after 100 days in acidified conditions (pH 7.7). In low pH, numbers of the spirorbid Neodexiospira pseudocorrugata were reduced ×5 compared to controls. The two ascidians present behaved differently with Aplidium sp. decreasing ×10 in pH 7.7, whereas Molgula sp. numbers were ×4 higher in low pH than controls. Calcareous sponge (Leucosolenia sp.) numbers increased ×2.5 in pH 7.7 over controls. The diatom and filamentous algal community was also more poorly developed in the low pH treatments compared to controls. Colonization of new surfaces likewise showed large decreases in spirorbid numbers, but numbers of sponges and Molgula sp. increased. Spirorbid losses appeared due to both recruitment failure and loss of existing tubes. Spirorbid tubes are comprised of a loose prismatic fabric of calcite crystals. Loss of tube materials appeared due to changes in the binding matrix and not crystal dissolution, as SEM analyses showed crystal surfaces were not pitted or dissolved in low pH conditions. Biofouling communities face dramatic future changes with reductions in groups with hard exposed exoskeletons and domination by soft-bodied ascidians and sponges.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Peck LS,Clark MS,Power D,Reis J,Batista FM,Harper EM

doi

10.1111/gcb.12841

subject

Has Abstract

pub_date

2015-05-01 00:00:00

pages

1907-13

issue

5

eissn

1354-1013

issn

1365-2486

journal_volume

21

pub_type

杂志文章
  • Decomposition nitrogen is better retained than simulated deposition from mineral amendments in a temperate forest.

    abstract::Nitrogen (N) deposition (NDEP ) drives forest carbon (C) sequestration but the size of this effect is still uncertain. In the field, an estimate of these effects can be obtained by applying mineral N fertilizers over the soil or forest canopy. A 15 N label in the fertilizer can be then used to trace the movement of th...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13450

    authors: Nair RK,Perks MP,Mencuccini M

    更新日期:2017-04-01 00:00:00

  • Population trends influence species ability to track climate change.

    abstract::Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species' climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13478

    authors: Ralston J,DeLuca WV,Feldman RE,King DI

    更新日期:2017-04-01 00:00:00

  • Soil properties and sediment accretion modulate methane fluxes from restored wetlands.

    abstract::Wetlands are the largest source of methane (CH4 ) globally, yet our understanding of how process-level controls scale to ecosystem fluxes remains limited. It is particularly uncertain how variable soil properties influence ecosystem CH4 emissions on annual time scales. We measured ecosystem carbon dioxide (CO2 ) and C...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14124

    authors: Chamberlain SD,Anthony TL,Silver WL,Eichelmann E,Hemes KS,Oikawa PY,Sturtevant C,Szutu DJ,Verfaillie JG,Baldocchi DD

    更新日期:2018-09-01 00:00:00

  • Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters.

    abstract::Lignin is an aromatic plant compound that decomposes more slowly than other organic matter compounds; however, it was recently shown that lignin could decompose as fast as litter bulk carbon in minerals soils. In alpine Histosols, where organic matter dynamics is largely unaffected by mineral constituents, lignin may ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12497

    authors: Duboc O,Dignac MF,Djukic I,Zehetner F,Gerzabek MH,Rumpel C

    更新日期:2014-07-01 00:00:00

  • Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland.

    abstract::The net ecosystem CO2 exchange (NEE) drives the carbon (C) sink-source strength of northern peatlands. Since NEE represents a balance between various production and respiration fluxes, accurate predictions of its response to global changes require an in depth understanding of these underlying processes. Currently, how...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14292

    authors: Järveoja J,Nilsson MB,Gažovič M,Crill PM,Peichl M

    更新日期:2018-08-01 00:00:00

  • Do invasive alien plants benefit more from global environmental change than native plants?

    abstract::Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in resp...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.13579

    authors: Liu Y,Oduor AMO,Zhang Z,Manea A,Tooth IM,Leishman MR,Xu X,van Kleunen M

    更新日期:2017-08-01 00:00:00

  • Long-term nitrogen additions increase likelihood of climate stress and affect recovery from wildfire in a lowland heath.

    abstract::Increases in the emissions and associated atmospheric deposition of nitrogen (N) have the potential to cause significant changes to the structure and function of N-limited ecosystems. Here, we present the results of a long-term (13 year) experiment assessing the impacts of N addition (30 kg ha(-1)  yr(-1) ) on a UK lo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02732.x

    authors: Southon GE,Green ER,Jones AG,Barker CG,Power SA

    更新日期:2012-09-01 00:00:00

  • Climatic changes can drive the loss of genetic diversity in a Neotropical savanna tree species.

    abstract::The high rates of future climatic changes, compared with the rates reported for past changes, may hamper species adaptation to new climates or the tracking of suitable conditions, resulting in significant loss of genetic diversity. Trees are dominant species in many biomes and because they are long-lived, they may not...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13685

    authors: Lima JS,Ballesteros-Mejia L,Lima-Ribeiro MS,Collevatti RG

    更新日期:2017-11-01 00:00:00

  • Light and warming drive forest understorey community development in different environments.

    abstract::Plant community composition and functional traits respond to chronic drivers such as climate change and nitrogen (N) deposition. In contrast, pulse disturbances from ecosystem management can additionally change resources and conditions. Community responses to combined environmental changes may further depend on land-u...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14955

    authors: Blondeel H,Perring MP,Depauw L,De Lombaerde E,Landuyt D,De Frenne P,Verheyen K

    更新日期:2020-03-01 00:00:00

  • Miami heat: Urban heat islands influence the thermal suitability of habitats for ectotherms.

    abstract::The urban heat island effect, where urban areas exhibit higher temperatures than less-developed suburban and natural habitats, occurs in cities across the globe and is well understood from a physical perspective and at broad spatial scales. However, very little is known about how thermal variation caused by urbanizati...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14509

    authors: Battles AC,Kolbe JJ

    更新日期:2019-02-01 00:00:00

  • Risk of genetic maladaptation due to climate change in three major European tree species.

    abstract::Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnera...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13802

    authors: Frank A,Howe GT,Sperisen C,Brang P,Clair JBS,Schmatz DR,Heiri C

    更新日期:2017-12-01 00:00:00

  • Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.

    abstract::Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiver...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13355

    authors: Boit A,Sakschewski B,Boysen L,Cano-Crespo A,Clement J,Garcia-Alaniz N,Kok K,Kolb M,Langerwisch F,Rammig A,Sachse R,van Eupen M,von Bloh W,Clara Zemp D,Thonicke K

    更新日期:2016-11-01 00:00:00

  • Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose-response data.

    abstract::The rising trend in concentrations of ground-level ozone (O3 ) - a common air pollutant and phytotoxin - currently being experienced in some world regions represents a threat to agricultural yield. Soybean (Glycine max (L.) Merr.) is an O3 -sensitive crop species and is experiencing increasing global demand as a dieta...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13318

    authors: Osborne SA,Mills G,Hayes F,Ainsworth EA,Büker P,Emberson L

    更新日期:2016-09-01 00:00:00

  • Combined effects of warming and nutrients on marine communities are moderated by predators and vary across functional groups.

    abstract::Warming, nutrient enrichment and biodiversity modification are among the most pervasive components of human-induced global environmental change. We know little about their cumulative effects on ecosystems; however, even though this knowledge is fundamental to predicting and managing their consequences in a changing wo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14456

    authors: White L,Donohue I,Emmerson MC,O'Connor NE

    更新日期:2018-12-01 00:00:00

  • Habitat destruction and overexploitation drive widespread declines in all facets of mammalian diversity in the Gran Chaco.

    abstract::Global biodiversity is under high and rising anthropogenic pressure. Yet, how the taxonomic, phylogenetic, and functional facets of biodiversity are affected by different threats over time is unclear. This is particularly true for the two main drivers of the current biodiversity crisis: habitat destruction and overexp...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15418

    authors: Romero-Muñoz A,Fandos G,Benítez-López A,Kuemmerle T

    更新日期:2021-02-01 00:00:00

  • Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change.

    abstract::Current knowledge of phenological shifts in Palearctic bird migration is largely based on data collected on migrants at their breeding grounds; little is known about the phenology of these birds at their nonbreeding grounds, and even less about that of intra-African migrants. Because climate change patterns are not un...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12857

    authors: Bussière EM,Underhill LG,Altwegg R

    更新日期:2015-06-01 00:00:00

  • Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance.

    abstract::Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15283

    authors: Olid C,Klaminder J,Monteux S,Johansson M,Dorrepaal E

    更新日期:2020-10-01 00:00:00

  • Temperature and soil fertility as regulators of tree line Scots pine growth and survival-implications for the acclimation capacity of northern populations.

    abstract::The acclimation capacity of leading edge tree populations is crucially important in a warming climate. Theoretical considerations suggest that adaptation through genetic change is needed, but this may be a slow process. Both positive and catastrophic outcomes have been predicted, while empirical studies have lagged be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13956

    authors: Rousi M,Possen BJMH,Ruotsalainen S,Silfver T,Mikola J

    更新日期:2018-02-01 00:00:00

  • Non-linearities in bird responses across urbanization gradients: A meta-analysis.

    abstract::Urbanization is one of the most extreme forms of environmental alteration, posing a major threat to biodiversity. We studied the effects of urbanization on avian communities via a systematic review using hierarchical and categorical meta-analyses. Altogether, we found 42 observations from 37 case studies for species r...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.13964

    authors: Batáry P,Kurucz K,Suarez-Rubio M,Chamberlain DE

    更新日期:2018-03-01 00:00:00

  • Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China.

    abstract::Autumn phenology plays a critical role in regulating climate-biosphere interactions. However, the climatic drivers of autumn phenology remain unclear. In this study, we applied four methods to estimate the date of the end of the growing season (EOS) across China's temperate biomes based on a 30-year normalized differe...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13081

    authors: Liu Q,Fu YH,Zeng Z,Huang M,Li X,Piao S

    更新日期:2016-02-01 00:00:00

  • An iron cycle cascade governs the response of equatorial Pacific ecosystems to climate change.

    abstract::Earth System Models project that global climate change will reduce ocean net primary production (NPP), upper trophic level biota biomass and potential fisheries catches in the future, especially in the eastern equatorial Pacific. However, projections from Earth System Models are undermined by poorly constrained assump...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15316

    authors: Tagliabue A,Barrier N,Du Pontavice H,Kwiatkowski L,Aumont O,Bopp L,Cheung WWL,Gascuel D,Maury O

    更新日期:2020-09-24 00:00:00

  • Future habitat suitability for coral reef ecosystems under global warming and ocean acidification.

    abstract::Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12335

    authors: Couce E,Ridgwell A,Hendy EJ

    更新日期:2013-12-01 00:00:00

  • Chronic ozone exacerbates the reduction in photosynthesis and acceleration of senescence caused by limited N availability in Nicotiana sylvestris.

    abstract::Both elevated ozone (O(3)) and limiting soil nitrogen (N) availability negatively affect crop performance. However, less is known about how the combination of elevated O(3) and limiting N affect crop growth and metabolism. In this study, we grew tobacco (Nicotiana sylvestris) in ambient and elevated O(3) at two N leve...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12237

    authors: Yendrek CR,Leisner CP,Ainsworth EA

    更新日期:2013-10-01 00:00:00

  • Aphid-willow interactions in a high Arctic ecosystem: responses to raised temperature and goose disturbance.

    abstract::Recently, there have been several studies using open top chambers (OTCs) or cloches to examine the response of Arctic plant communities to artificially elevated temperatures. Few, however, have investigated multitrophic systems, or the effects of both temperature and vertebrate grazing treatments on invertebrates. Thi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12284

    authors: Gillespie MA,Jónsdóttir IS,Hodkinson ID,Cooper EJ

    更新日期:2013-12-01 00:00:00

  • Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations.

    abstract::The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12391

    authors: Loranty MM,Berner LT,Goetz SJ,Jin Y,Randerson JT

    更新日期:2014-02-01 00:00:00

  • Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems.

    abstract::Human and natural systems have adapted to and evolved within historical climatic conditions. Anthropogenic climate change has the potential to alter these conditions such that onset of unprecedented climatic extremes will outpace evolutionary and adaptive capabilities. To assess whether and when future climate extreme...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14329

    authors: Tan X,Gan TY,Horton DE

    更新日期:2018-10-01 00:00:00

  • Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity.

    abstract::Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO2 accumulation are emerging, however, the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primar...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14324

    authors: Richier S,Achterberg EP,Humphreys MP,Poulton AJ,Suggett DJ,Tyrrell T,Moore CM

    更新日期:2018-09-01 00:00:00

  • Invited review: Intergovernmental Panel on Climate Change, agriculture, and food-A case of shifting cultivation and history.

    abstract::Since 1990, the Intergovernmental Panel on Climate Change (IPCC) has produced five Assessment Reports (ARs), in which agriculture as the production of food for humans via crops and livestock have featured in one form or another. A constructed database of the ca. 2,100 cited experiments and simulations in the five ARs ...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14700

    authors: Porter JR,Challinor AJ,Henriksen CB,Howden SM,Martre P,Smith P

    更新日期:2019-08-01 00:00:00

  • Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes.

    abstract::The advent of genomic-, transcriptomic- and proteomic-based approaches has revolutionized our ability to describe marine microbial communities, including biogeography, metabolic potential and diversity, mechanisms of adaptation, and phylogeny and evolutionary history. New interdisciplinary approaches are needed to mov...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12983

    authors: Mock T,Daines SJ,Geider R,Collins S,Metodiev M,Millar AJ,Moulton V,Lenton TM

    更新日期:2016-01-01 00:00:00

  • Quantifying variety-specific heat resistance and the potential for adaptation to climate change.

    abstract::The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy invo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13163

    authors: Tack J,Barkley A,Rife TW,Poland JA,Nalley LL

    更新日期:2016-08-01 00:00:00