Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

Abstract:

:Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Rofner C,Peter H,Catalán N,Drewes F,Sommaruga R,Pérez MT

doi

10.1111/gcb.13545

subject

Has Abstract

pub_date

2017-06-01 00:00:00

pages

2331-2344

issue

6

eissn

1354-1013

issn

1365-2486

journal_volume

23

pub_type

杂志文章
  • Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange.

    abstract::Terrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2 ) concentrations, but processes driving the IAV of net ecosystem CO2 exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated wit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14731

    authors: Fu Z,Stoy PC,Poulter B,Gerken T,Zhang Z,Wakbulcho G,Niu S

    更新日期:2019-10-01 00:00:00

  • The muddle of ages, turnover, transit, and residence times in the carbon cycle.

    abstract::Comparisons among ecosystem models or ecosystem dynamics along environmental gradients commonly rely on metrics that integrate different processes into a useful diagnostic. Terms such as age, turnover, residence, and transit times are often used for this purpose; however, these terms are variably defined in the litera...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13556

    authors: Sierra CA,Müller M,Metzler H,Manzoni S,Trumbore SE

    更新日期:2017-05-01 00:00:00

  • "Got rats?" Global environmental costs of thirst for milk include acute biodiversity impacts linked to dairy feed production.

    abstract::Rodents damaging alfalfa crops typically destined for export to booming Eastern markets often cause economical losses to farmers, but management interventions attempting to control rodents (i.e., use of rodenticides) are themselves damaging to biodiversity. These damages resonate beyond dairy feed producing regions th...

    journal_title:Global change biology

    pub_type: 信件

    doi:10.1111/gcb.14170

    authors: Luque-Larena JJ,Mougeot F,Arroyo B,Lambin X

    更新日期:2018-07-01 00:00:00

  • Dramatic changes in a phytoplankton community in response to local and global pressures: a 24-year survey of the river Loire (France).

    abstract::The impact of climate change and of other anthropogenic pressures on the structure and composition of phytoplankton communities of large European rivers remains poorly documented. Here we report the findings of a study of the changes in the phytoplankton community of the middle segment of the river Loire over the past...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12139

    authors: Larroudé S,Massei N,Reyes-Marchant P,Delattre C,Humbert JF

    更新日期:2013-05-01 00:00:00

  • Climatic changes can drive the loss of genetic diversity in a Neotropical savanna tree species.

    abstract::The high rates of future climatic changes, compared with the rates reported for past changes, may hamper species adaptation to new climates or the tracking of suitable conditions, resulting in significant loss of genetic diversity. Trees are dominant species in many biomes and because they are long-lived, they may not...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13685

    authors: Lima JS,Ballesteros-Mejia L,Lima-Ribeiro MS,Collevatti RG

    更新日期:2017-11-01 00:00:00

  • Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios.

    abstract::The combination of global and local stressors is leading to a decline in coral reef health globally. In the case of eutrophication, increased concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) are largely attributed to local land use changes. From the global perspective, increased atmospheric CO...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12035

    authors: Reymond CE,Lloyd A,Kline DI,Dove SG,Pandolfi JM

    更新日期:2013-01-01 00:00:00

  • Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

    abstract::With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12482

    authors: Gilroy JJ,Woodcock P,Edwards FA,Wheeler C,Medina Uribe CA,Haugaasen T,Edwards DP

    更新日期:2014-07-01 00:00:00

  • Anthropogenic disturbance homogenizes seagrass fish communities.

    abstract::Anthropogenic activities have led to the biotic homogenization of many ecological communities, yet in coastal systems this phenomenon remains understudied. In particular, activities that locally affect marine habitat-forming foundation species may perturb habitat and promote species with generalist, opportunistic trai...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14090

    authors: Iacarella JC,Adamczyk E,Bowen D,Chalifour L,Eger A,Heath W,Helms S,Hessing-Lewis M,Hunt BPV,MacInnis A,O'Connor MI,Robinson CLK,Yakimishyn J,Baum JK

    更新日期:2018-05-01 00:00:00

  • Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms.

    abstract::Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13652

    authors: Lefevre S,McKenzie DJ,Nilsson GE

    更新日期:2017-09-01 00:00:00

  • Decomposition nitrogen is better retained than simulated deposition from mineral amendments in a temperate forest.

    abstract::Nitrogen (N) deposition (NDEP ) drives forest carbon (C) sequestration but the size of this effect is still uncertain. In the field, an estimate of these effects can be obtained by applying mineral N fertilizers over the soil or forest canopy. A 15 N label in the fertilizer can be then used to trace the movement of th...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13450

    authors: Nair RK,Perks MP,Mencuccini M

    更新日期:2017-04-01 00:00:00

  • Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends.

    abstract::The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net prim...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12187

    authors: Piao S,Sitch S,Ciais P,Friedlingstein P,Peylin P,Wang X,Ahlström A,Anav A,Canadell JG,Cong N,Huntingford C,Jung M,Levis S,Levy PE,Li J,Lin X,Lomas MR,Lu M,Luo Y,Ma Y,Myneni RB,Poulter B,Sun Z,Wang T,Viovy

    更新日期:2013-07-01 00:00:00

  • Reproduction and seedling establishment of Picea glauca across the northernmost forest-tundra region in Canada.

    abstract::The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02769.x

    authors: Walker X,Henry GHR,McLeod K,Hofgaard A

    更新日期:2012-10-01 00:00:00

  • Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain but reduces soil carbon and nutrient pools.

    abstract::Arctic climate warming will be primarily during winter, resulting in increased snowfall in many regions. Previous tundra research on the impacts of deepened snow has generally been of short duration. Here, we report relatively long-term (7-9 years) effects of experimentally deepened snow on plant community structure, ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14084

    authors: Christiansen CT,Lafreniére MJ,Henry GHR,Grogan P

    更新日期:2018-08-01 00:00:00

  • Long-term enhanced winter soil frost alters growing season CO2 fluxes through its impact on vegetation development in a boreal peatland.

    abstract::At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO2 ) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13621

    authors: Zhao J,Peichl M,Nilsson MB

    更新日期:2017-08-01 00:00:00

  • Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback.

    abstract::Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought-induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long-term by quantifying wood-anatomical traits (tracheid size and area of parenchyma rays...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13227

    authors: Pellizzari E,Camarero JJ,Gazol A,Sangüesa-Barreda G,Carrer M

    更新日期:2016-06-01 00:00:00

  • Points of view matter when assessing biodiversity vulnerability to environmental changes.

    abstract::We can expect different levels of vulnerability depending on the paradigm used to determine the mechanisms that will alter biodiversity under climate change. A multi-paradigm perspective is necessary to get the full picture of biodiversity vulnerability. This is a commentary on Kling et al., 26, 2798-2813. ...

    journal_title:Global change biology

    pub_type: 评论,杂志文章

    doi:10.1111/gcb.15054

    authors: Ordonez A

    更新日期:2020-05-01 00:00:00

  • Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures.

    abstract::Equatorial populations of marine species are predicted to be most impacted by global warming because they could be adapted to a narrow range of temperatures in their local environment. We investigated the thermal range at which aerobic metabolic performance is optimum in equatorial populations of coral reef fish in no...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12455

    authors: Rummer JL,Couturier CS,Stecyk JA,Gardiner NM,Kinch JP,Nilsson GE,Munday PL

    更新日期:2014-04-01 00:00:00

  • Quantifying variety-specific heat resistance and the potential for adaptation to climate change.

    abstract::The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy invo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13163

    authors: Tack J,Barkley A,Rife TW,Poland JA,Nalley LL

    更新日期:2016-08-01 00:00:00

  • Quantitative assessment of microbial necromass contribution to soil organic matter.

    abstract::Soil carbon transformation and sequestration have received significant interest in recent years due to a growing need for quantitating its role in mitigating climate change. Even though our understanding of the nature of soil organic matter has recently been substantially revised, fundamental uncertainty remains about...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14781

    authors: Liang C,Amelung W,Lehmann J,Kästner M

    更新日期:2019-11-01 00:00:00

  • Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity.

    abstract::Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO2 accumulation are emerging, however, the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primar...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14324

    authors: Richier S,Achterberg EP,Humphreys MP,Poulton AJ,Suggett DJ,Tyrrell T,Moore CM

    更新日期:2018-09-01 00:00:00

  • An iron cycle cascade governs the response of equatorial Pacific ecosystems to climate change.

    abstract::Earth System Models project that global climate change will reduce ocean net primary production (NPP), upper trophic level biota biomass and potential fisheries catches in the future, especially in the eastern equatorial Pacific. However, projections from Earth System Models are undermined by poorly constrained assump...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15316

    authors: Tagliabue A,Barrier N,Du Pontavice H,Kwiatkowski L,Aumont O,Bopp L,Cheung WWL,Gascuel D,Maury O

    更新日期:2020-09-24 00:00:00

  • Will coral reef sponges be winners in the Anthropocene?

    abstract::Recent observations have shown that increases in climate change-related coral mortality cause changes in shallow coral reef community structure through phase shifts to alternative taxa. As a result, sponges have emerged as a potential candidate taxon to become a "winner," and therefore a numerically and functionally d...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15039

    authors: Lesser MP,Slattery M

    更新日期:2020-06-01 00:00:00

  • How ecologists define drought, and why we should do better.

    abstract::Drought, widely studied as an important driver of ecosystem dynamics, is predicted to increase in frequency and severity globally. To study drought, ecologists must define or at least operationalize what constitutes a drought. How this is accomplished in practice is unclear, particularly given that climatologists have...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14747

    authors: Slette IJ,Post AK,Awad M,Even T,Punzalan A,Williams S,Smith MD,Knapp AK

    更新日期:2019-10-01 00:00:00

  • Ecological niche modeling of coastal dune plants and future potential distribution in response to climate change and sea level rise.

    abstract::Climate change (CC) and sea level rise (SLR) are phenomena that could have severe impacts on the distribution of coastal dune vegetation. To explore this we modeled the climatic niches of six coastal dunes plant species that grow along the shoreline of the Gulf of Mexico and the Yucatan Peninsula, and projected climat...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12236

    authors: Mendoza-González G,Martínez ML,Rojas-Soto OR,Vázquez G,Gallego-Fernández JB

    更新日期:2013-08-01 00:00:00

  • Methane emission from global livestock sector during 1890-2014: Magnitude, trends and spatiotemporal patterns.

    abstract::Human demand for livestock products has increased rapidly during the past few decades largely due to dietary transition and population growth, with significant impact on climate and the environment. The contribution of ruminant livestock to greenhouse gas (GHG) emissions has been investigated extensively at various sc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13709

    authors: Dangal SRS,Tian H,Zhang B,Pan S,Lu C,Yang J

    更新日期:2017-10-01 00:00:00

  • Climate change and fishing: a century of shifting distribution in North Sea cod.

    abstract::Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in gre...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12513

    authors: Engelhard GH,Righton DA,Pinnegar JK

    更新日期:2014-08-01 00:00:00

  • Methane emissions from contrasting urban freshwaters: Rates, drivers, and a whole-city footprint.

    abstract::Global urbanization trends impose major alterations on surface waters. This includes impacts on ecosystem functioning that can involve feedbacks on climate through changes in rates of greenhouse gas emissions. The combination of high nutrient supply and shallow depth typical of urban freshwaters is particularly conduc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14799

    authors: Herrero Ortega S,Romero González-Quijano C,Casper P,Singer GA,Gessner MO

    更新日期:2019-12-01 00:00:00

  • Fish communities diverge in species but converge in traits over three decades of warming.

    abstract::Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait-based approaches can provide better insight than species-based (i.e. taxonomic) approaches into community assembly and ecosystem functio...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14785

    authors: McLean M,Mouillot D,Lindegren M,Villéger S,Engelhard G,Murgier J,Auber A

    更新日期:2019-11-01 00:00:00

  • Land-sparing agriculture sustains higher levels of avian functional diversity than land sharing.

    abstract::The ecological impacts of meeting rising demands for food production can potentially be mitigated by two competing land-use strategies: off-setting natural habitats through intensification of existing farmland (land sparing), or elevating biodiversity within the agricultural matrix via the integration of "wildlife-fri...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14601

    authors: Cannon PG,Gilroy JJ,Tobias JA,Anderson A,Haugaasen T,Edwards DP

    更新日期:2019-05-01 00:00:00

  • Biomass consumption by surface fires across Earth's most fire prone continent.

    abstract::Landscape fire is a key but poorly understood component of the global carbon cycle. Predicting biomass consumption by fire at large spatial scales is essential to understanding carbon dynamics and hence how fire management can reduce greenhouse gas emissions and increase ecosystem carbon storage. An Australia-wide fie...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14460

    authors: Murphy BP,Prior LD,Cochrane MA,Williamson GJ,Bowman DMJS

    更新日期:2019-01-01 00:00:00