Ecological niche modeling of coastal dune plants and future potential distribution in response to climate change and sea level rise.

Abstract:

:Climate change (CC) and sea level rise (SLR) are phenomena that could have severe impacts on the distribution of coastal dune vegetation. To explore this we modeled the climatic niches of six coastal dunes plant species that grow along the shoreline of the Gulf of Mexico and the Yucatan Peninsula, and projected climatic niches to future potential distributions based on two CC scenarios and SLR projections. Our analyses suggest that distribution of coastal plants will be severely limited, and more so in the case of local endemics (Chamaecrista chamaecristoides, Palafoxia lindenii, Cakile edentula). The possibilities of inland migration to the potential 'new shoreline' will be limited by human infrastructure and ecosystem alteration that will lead to a 'coastal squeeze' of the coastal habitats. Finally, we identified areas as future potential refuges for the six species in central Gulf of Mexico, and northern Yucatán Peninsula especially under CC and SLR scenarios.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Mendoza-González G,Martínez ML,Rojas-Soto OR,Vázquez G,Gallego-Fernández JB

doi

10.1111/gcb.12236

subject

Has Abstract

pub_date

2013-08-01 00:00:00

pages

2524-35

issue

8

eissn

1354-1013

issn

1365-2486

journal_volume

19

pub_type

杂志文章
  • High ecosystem stability of evergreen broadleaf forests under severe droughts.

    abstract::Global increase in drought occurrences threatens the stability of terrestrial ecosystem functioning. Evergreen broadleaf forests (EBFs) keep leaves throughout the year, and therefore could experience higher drought risks than other biomes. However, the recent temporal variability of global vegetation productivity or l...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14748

    authors: Huang K,Xia J

    更新日期:2019-10-01 00:00:00

  • Advancing frost dates have reduced frost risk among most North American angiosperms since 1980.

    abstract::In recent decades, the final frost dates of winter have advanced throughout North America, and many angiosperm taxa have simultaneously advanced their flowering times as the climate has warmed. Phenological advancement may reduce plant fitness, as flowering prior to the final frost date of the winter/spring transition...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15380

    authors: Park IW,Ramirez-Parada T,Mazer SJ

    更新日期:2021-01-01 00:00:00

  • Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes.

    abstract::The advent of genomic-, transcriptomic- and proteomic-based approaches has revolutionized our ability to describe marine microbial communities, including biogeography, metabolic potential and diversity, mechanisms of adaptation, and phylogeny and evolutionary history. New interdisciplinary approaches are needed to mov...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12983

    authors: Mock T,Daines SJ,Geider R,Collins S,Metodiev M,Millar AJ,Moulton V,Lenton TM

    更新日期:2016-01-01 00:00:00

  • Four decades of functional community change reveals gradual trends and low interlinkage across trophic groups in a large marine ecosystem.

    abstract::The rate at which biological diversity is altered on both land and in the sea, makes temporal community development a critical and fundamental part of understanding global change. With advancements in trait-based approaches, the focus on the impact of temporal change has shifted towards its potential effects on the fu...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14552

    authors: Törnroos A,Pecuchet L,Olsson J,Gårdmark A,Blomqvist M,Lindegren M,Bonsdorff E

    更新日期:2018-12-20 00:00:00

  • Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests.

    abstract::The terrestrial forest ecosystems in the northern high latitude region have been experiencing significant warming rates over several decades. These forests are considered crucial to the climate system and global carbon cycle and are particularly vulnerable to climate change. To obtain an improved estimate of the respo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14135

    authors: Tei S,Sugimoto A

    更新日期:2018-09-01 00:00:00

  • Asynchronous onset of eutrophication among shallow prairie lakes of the Northern Great Plains, Alberta, Canada.

    abstract::Coherent timing of agricultural expansion, fertilizer application, atmospheric nutrient deposition, and accelerated global warming is expected to promote synchronous fertilization of regional surface waters and coherent development of algal blooms and lake eutrophication. While broad-scale cyanobacterial expansion is ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13076

    authors: Maheaux H,Leavitt PR,Jackson LJ

    更新日期:2016-01-01 00:00:00

  • Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic.

    abstract::Arctic warming is resulting in reduced snow cover and increased shrub growth, both of which have been associated with altered land surface-atmospheric feedback processes involving sensible heat flux, ground heat flux and biogeochemical cycling. Using field measurements, we show that two common Arctic shrub species (Be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13297

    authors: Williamson SN,Barrio IC,Hik DS,Gamon JA

    更新日期:2016-11-01 00:00:00

  • Do increased summer precipitation and N deposition alter fine root dynamics in a Mojave Desert ecosystem?

    abstract::Climate change is expected to impact the amount and distribution of precipitation in the arid southwestern United States. In addition, nitrogen (N) deposition is increasing in these regions due to increased urbanization. Responses of belowground plant activity to increases in soil water content and N have shown incons...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12082

    authors: Verburg PS,Young AC,Stevenson BA,Glanzmann I,Arnone JA 3rd,Marion GM,Holmes C,Nowak RS

    更新日期:2013-03-01 00:00:00

  • Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model.

    abstract::Mesophyll conductance (gm ) is known to affect plant photosynthesis. However, gm is rarely explicitly considered in land surface models (LSMs), with the consequence that its role in ecosystem and large-scale carbon and water fluxes is poorly understood. In particular, the different magnitudes of gm across plant functi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14604

    authors: Knauer J,Zaehle S,De Kauwe MG,Bahar NHA,Evans JR,Medlyn BE,Reichstein M,Werner C

    更新日期:2019-05-01 00:00:00

  • Interactive climate factors restrict future increases in spring productivity of temperate and boreal trees.

    abstract::Climate warming is currently advancing spring leaf-out of temperate and boreal trees, enhancing net primary productivity (NPP) of forests. However, it remains unclear whether this trend will continue, preventing for accurate projections of ecosystem functioning and climate feedbacks. Several ecophysiological mechanism...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15098

    authors: Zohner CM,Mo L,Pugh TAM,Bastin JF,Crowther TW

    更新日期:2020-07-01 00:00:00

  • Impacts of climate and land use on N2 O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania.

    abstract::In this study, we quantify the impacts of climate and land use on soil N2 O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land-use gradients at Mt. Kilimanjaro, combining long-...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13944

    authors: Gütlein A,Gerschlauer F,Kikoti I,Kiese R

    更新日期:2018-03-01 00:00:00

  • Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

    abstract::With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12482

    authors: Gilroy JJ,Woodcock P,Edwards FA,Wheeler C,Medina Uribe CA,Haugaasen T,Edwards DP

    更新日期:2014-07-01 00:00:00

  • Long-term enhanced winter soil frost alters growing season CO2 fluxes through its impact on vegetation development in a boreal peatland.

    abstract::At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO2 ) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13621

    authors: Zhao J,Peichl M,Nilsson MB

    更新日期:2017-08-01 00:00:00

  • Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    abstract::Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13633

    authors: Dalcin Martins P,Hoyt DW,Bansal S,Mills CT,Tfaily M,Tangen BA,Finocchiaro RG,Johnston MD,McAdams BC,Solensky MJ,Smith GJ,Chin YP,Wilkins MJ

    更新日期:2017-08-01 00:00:00

  • Testing for changes in biomass dynamics in large-scale forest datasets.

    abstract::Tropical forest responses to climate and atmospheric change are critical to the future of the global carbon budget. Recent studies have reported increases in estimated above-ground biomass (EAGB) stocks, productivity, and mortality in old-growth tropical forests. These increases could reflect a shift in forest functio...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14833

    authors: Rutishauser E,Wright SJ,Condit R,Hubbell SP,Davies SJ,Muller-Landau HC

    更新日期:2020-03-01 00:00:00

  • Projecting demographic responses to climate change: adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population.

    abstract::Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long-term mark-recapture data set, we examined the influence of multiple direc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12228

    authors: Dybala KE,Eadie JM,Gardali T,Seavy NE,Herzog MP

    更新日期:2013-09-01 00:00:00

  • Annual temperature variation as a time machine to understand the effects of long-term climate change on a poleward range shift.

    abstract::Range shifts due to annual variation in temperature are more tractable than range shifts linked to decadal to century long temperature changes due to climate change, providing natural experiments to determine the mechanisms responsible for driving long-term distributional shifts. In this study we couple physiologicall...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14300

    authors: Crickenberger S,Wethey DS

    更新日期:2018-08-01 00:00:00

  • Long-term nitrogen additions increase likelihood of climate stress and affect recovery from wildfire in a lowland heath.

    abstract::Increases in the emissions and associated atmospheric deposition of nitrogen (N) have the potential to cause significant changes to the structure and function of N-limited ecosystems. Here, we present the results of a long-term (13 year) experiment assessing the impacts of N addition (30 kg ha(-1)  yr(-1) ) on a UK lo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02732.x

    authors: Southon GE,Green ER,Jones AG,Barker CG,Power SA

    更新日期:2012-09-01 00:00:00

  • Adapting management to a changing world: Warm temperatures, dry soil, and interannual variability limit restoration success of a dominant woody shrub in temperate drylands.

    abstract::Restoration and rehabilitation of native vegetation in dryland ecosystems, which encompass over 40% of terrestrial ecosystems, is a common challenge that continues to grow as wildfire and biological invasions transform dryland plant communities. The difficulty in part stems from low and variable precipitation, combine...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14374

    authors: Shriver RK,Andrews CM,Pilliod DS,Arkle RS,Welty JL,Germino MJ,Duniway MC,Pyke DA,Bradford JB

    更新日期:2018-10-01 00:00:00

  • Current and projected global distribution of Phytophthora cinnamomi, one of the world's worst plant pathogens.

    abstract::Globally, Phytophthora cinnamomi is listed as one of the 100 worst invasive alien species and active management is required to reduce impact and prevent spread in both horticulture and natural ecosystems. Conversely, there are regions thought to be suitable for the pathogen where no disease is observed. We developed a...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13492

    authors: Burgess TI,Scott JK,Mcdougall KL,Stukely MJ,Crane C,Dunstan WA,Brigg F,Andjic V,White D,Rudman T,Arentz F,Ota N,Hardy GE

    更新日期:2017-04-01 00:00:00

  • Modeling optimal responses and fitness consequences in a changing Arctic.

    abstract::Animals must balance a series of costs and benefits while trying to maximize their fitness. For example, an individual may need to choose how much energy to allocate to reproduction versus growth, or how much time to spend on vigilance versus foraging. Their decisions depend on complex interactions between environment...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14681

    authors: Reimer JR,Mangel M,Derocher AE,Lewis MA

    更新日期:2019-10-01 00:00:00

  • The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models.

    abstract::Autumn senescence regulates multiple aspects of ecosystem function, along with associated feedbacks to the climate system. Despite its importance, current understanding of the drivers of senescence is limited, leading to a large spread in predictions of how the timing of senescence, and thus the length of the growing ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12890

    authors: Keenan TF,Richardson AD

    更新日期:2015-07-01 00:00:00

  • Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents.

    abstract::The effects of short-term drought on soil microbial communities remain largely unexplored, particularly at large scales and under field conditions. We used seven experimental sites from two continents (North America and Australia) to evaluate the impacts of imposed extreme drought on the abundance, community compositi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14113

    authors: Ochoa-Hueso R,Collins SL,Delgado-Baquerizo M,Hamonts K,Pockman WT,Sinsabaugh RL,Smith MD,Knapp AK,Power SA

    更新日期:2018-07-01 00:00:00

  • 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation?

    abstract::Free-air CO2 enrichment (FACE) allows open-air elevation of [CO2 ] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta-analysis. Subsequent studies have combine...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.15375

    authors: Ainsworth EA,Long SP

    更新日期:2021-01-01 00:00:00

  • Annual plants change in size over a century of observations.

    abstract::Studies have documented changes in animal body sizes over the last century, but very little is known about changes in plant sizes, even though reduced plant productivity is potentially responsible for declines in size of other organisms. Here, I ask whether warming trends in the Great Basin have affected plant size by...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12208

    authors: Leger EA

    更新日期:2013-07-01 00:00:00

  • Regional analysis of drought and heat impacts on forests: current and future science directions.

    abstract::Accurate assessments of forest response to current and future climate and human actions are needed at regional scales. Predicting future impacts on forests will require improved analysis of species-level adaptation, resilience, and vulnerability to mortality. Land system models can be enhanced by creating trait-based ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12651

    authors: Law BE

    更新日期:2014-12-01 00:00:00

  • Native and exotic plant cover vary inversely along a climate gradient 11 years following stand-replacing wildfire in a dry coniferous forest, Oregon, USA.

    abstract::Community re-assembly following future disturbances will often occur under warmer and more moisture-limited conditions than when current communities assembled. Because the establishment stage is regularly the most sensitive to climate and competition, the trajectory of recovery from disturbance in a changing environme...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12775

    authors: Dodson EK,Root HT

    更新日期:2015-02-01 00:00:00

  • Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions.

    abstract::Biological invasions are one of the biggest threats to global biodiversity. Marine artificial structures are proliferating worldwide and provide a haven for marine invasive species. Such structures disrupt local hydrodynamics, which can lead to the formation of oxygen-depleted microsites. The extent to which native fa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13668

    authors: Lagos ME,Barneche DR,White CR,Marshall DJ

    更新日期:2017-06-01 00:00:00

  • Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.

    abstract::Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12598

    authors: Crase B,Liedloff A,Vesk PA,Fukuda Y,Wintle BA

    更新日期:2014-08-01 00:00:00

  • Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem.

    abstract::Improving nitrogen (N) management for greater agricultural output while minimizing unintended environmental consequences is critical in the endeavor of feeding the growing population sustainably amid climate change. Enhanced-efficiency fertilizers (EEFs) have been developed to better synchronize fertilizer N release w...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13918

    authors: Li T,Zhang W,Yin J,Chadwick D,Norse D,Lu Y,Liu X,Chen X,Zhang F,Powlson D,Dou Z

    更新日期:2018-02-01 00:00:00