Projecting demographic responses to climate change: adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population.

Abstract:

:Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long-term mark-recapture data set, we examined the influence of multiple direct and indirect effects of weather on adult and juvenile survival for a population of Song Sparrows (Melospiza melodia) in California. We found evidence for a positive, direct effect of winter temperature on adult survival, and a positive, indirect effect of prior rainy season precipitation on juvenile survival, which was consistent with an effect of precipitation on food availability during the breeding season. We used these relationships, and climate projections of significantly warmer and slightly drier winter weather by the year 2100, to project a significant increase in mean adult survival (12-17%) and a slight decrease in mean juvenile survival (4-6%) under the B1 and A2 climate change scenarios. Together with results from previous studies on seasonal fecundity and postfledging survival in this population, we integrated these results in a population model and projected increases in the population growth rate under both climate change scenarios. Our results underscore the importance of considering multiple, direct, and indirect effects of weather throughout the annual cycle, as well as differences in the responses of each life stage to climate change. Projecting demographic responses to climate change can identify not only how populations will be affected by climate change but also indicate the demographic process(es) and specific mechanisms that may be responsible. This information can, in turn, inform climate change adaptation plans, help prioritize future research, and identify where limited conservation resources will be most effectively and efficiently spent.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Dybala KE,Eadie JM,Gardali T,Seavy NE,Herzog MP

doi

10.1111/gcb.12228

subject

Has Abstract

pub_date

2013-09-01 00:00:00

pages

2688-97

issue

9

eissn

1354-1013

issn

1365-2486

journal_volume

19

pub_type

杂志文章
  • SoilTemp: A global database of near-surface temperature.

    abstract::Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factor...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15123

    authors: Lembrechts JJ,Aalto J,Ashcroft MB,De Frenne P,Kopecký M,Lenoir J,Luoto M,Maclean IMD,Roupsard O,Fuentes-Lillo E,García RA,Pellissier L,Pitteloud C,Alatalo JM,Smith SW,Björk RG,Muffler L,Ratier Backes A,Cesarz S,Gott

    更新日期:2020-04-20 00:00:00

  • Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050.

    abstract::In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature-dependent transmission model for ZIKV t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15384

    authors: Ryan SJ,Carlson CJ,Tesla B,Bonds MH,Ngonghala CN,Mordecai EA,Johnson LR,Murdock CC

    更新日期:2021-01-01 00:00:00

  • Human pressures predict species' geographic range size better than biological traits.

    abstract::Geographic range size is the manifestation of complex interactions between intrinsic species traits and extrinsic environmental conditions. It is also a fundamental ecological attribute of species and a key extinction risk correlate. Past research has primarily focused on the role of biological and environmental predi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12834

    authors: Di Marco M,Santini L

    更新日期:2015-06-01 00:00:00

  • The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States.

    abstract::Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interacti...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13816

    authors: Lu X,Zhou Y,Liu Y,Le Page Y

    更新日期:2018-02-01 00:00:00

  • Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada.

    abstract::Insects, diseases, fire and drought and other disturbances associated with global climate change contribute to forest decline and mortality in many parts of the world. Forest decline and mortality related to drought or insect outbreaks have been observed in North American aspen forests. However, little research has be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13855

    authors: Chen L,Huang JG,Dawson A,Zhai L,Stadt KJ,Comeau PG,Whitehouse C

    更新日期:2018-02-01 00:00:00

  • Decomposition nitrogen is better retained than simulated deposition from mineral amendments in a temperate forest.

    abstract::Nitrogen (N) deposition (NDEP ) drives forest carbon (C) sequestration but the size of this effect is still uncertain. In the field, an estimate of these effects can be obtained by applying mineral N fertilizers over the soil or forest canopy. A 15 N label in the fertilizer can be then used to trace the movement of th...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13450

    authors: Nair RK,Perks MP,Mencuccini M

    更新日期:2017-04-01 00:00:00

  • Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus).

    abstract::The European spruce bark beetle Ips typographus is the most important insect pest in Central European forests. Under climate change, its phenology is presumed to be changing and mass infestations becoming more likely. While several studies have investigated climate effects across a latitudinal gradient, it remains an ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14766

    authors: Jakoby O,Lischke H,Wermelinger B

    更新日期:2019-12-01 00:00:00

  • Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    abstract::Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12414

    authors: Oishi AC,Palmroth S,Johnsen KH,McCarthy HR,Oren R

    更新日期:2014-04-01 00:00:00

  • Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests.

    abstract::Secondary forests (SFs) regenerating on previously deforested land account for large, expanding areas of tropical forest cover. Given that tropical forests rank among Earth's most important reservoirs of carbon and biodiversity, SFs play an increasingly pivotal role in the carbon cycle and as potential habitat for for...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14443

    authors: Lennox GD,Gardner TA,Thomson JR,Ferreira J,Berenguer E,Lees AC,Mac Nally R,Aragão LEOC,Ferraz SFB,Louzada J,Moura NG,Oliveira VHF,Pardini R,Solar RRC,Vaz-de Mello FZ,Vieira ICG,Barlow J

    更新日期:2018-12-01 00:00:00

  • Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada.

    abstract::Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling postfire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand ty...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14641

    authors: Day NJ,Dunfield KE,Johnstone JF,Mack MC,Turetsky MR,Walker XJ,White AL,Baltzer JL

    更新日期:2019-07-01 00:00:00

  • Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global meta-analysis.

    abstract::Land-use/land-cover change (LULCC) often results in degradation of natural wetlands and affects the dynamics of greenhouse gases (GHGs). However, the magnitude of changes in GHG emissions from wetlands undergoing various LULCC types remains unclear. We conducted a global meta-analysis with a database of 209 sites to e...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14933

    authors: Tan L,Ge Z,Zhou X,Li S,Li X,Tang J

    更新日期:2020-03-01 00:00:00

  • Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

    abstract::With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12482

    authors: Gilroy JJ,Woodcock P,Edwards FA,Wheeler C,Medina Uribe CA,Haugaasen T,Edwards DP

    更新日期:2014-07-01 00:00:00

  • Habitat destruction and overexploitation drive widespread declines in all facets of mammalian diversity in the Gran Chaco.

    abstract::Global biodiversity is under high and rising anthropogenic pressure. Yet, how the taxonomic, phylogenetic, and functional facets of biodiversity are affected by different threats over time is unclear. This is particularly true for the two main drivers of the current biodiversity crisis: habitat destruction and overexp...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15418

    authors: Romero-Muñoz A,Fandos G,Benítez-López A,Kuemmerle T

    更新日期:2021-02-01 00:00:00

  • Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends.

    abstract::The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net prim...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12187

    authors: Piao S,Sitch S,Ciais P,Friedlingstein P,Peylin P,Wang X,Ahlström A,Anav A,Canadell JG,Cong N,Huntingford C,Jung M,Levis S,Levy PE,Li J,Lin X,Lomas MR,Lu M,Luo Y,Ma Y,Myneni RB,Poulter B,Sun Z,Wang T,Viovy

    更新日期:2013-07-01 00:00:00

  • Anthropogenic disturbance homogenizes seagrass fish communities.

    abstract::Anthropogenic activities have led to the biotic homogenization of many ecological communities, yet in coastal systems this phenomenon remains understudied. In particular, activities that locally affect marine habitat-forming foundation species may perturb habitat and promote species with generalist, opportunistic trai...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14090

    authors: Iacarella JC,Adamczyk E,Bowen D,Chalifour L,Eger A,Heath W,Helms S,Hessing-Lewis M,Hunt BPV,MacInnis A,O'Connor MI,Robinson CLK,Yakimishyn J,Baum JK

    更新日期:2018-05-01 00:00:00

  • Climate change impact and adaptation for wheat protein.

    abstract::Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32-multi-model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14481

    authors: Asseng S,Martre P,Maiorano A,Rötter RP,O'Leary GJ,Fitzgerald GJ,Girousse C,Motzo R,Giunta F,Babar MA,Reynolds MP,Kheir AMS,Thorburn PJ,Waha K,Ruane AC,Aggarwal PK,Ahmed M,Balkovič J,Basso B,Biernath C,Bindi M,Ca

    更新日期:2019-01-01 00:00:00

  • Responses of belowground communities to large aboveground herbivores: Meta-analysis reveals biome-dependent patterns and critical research gaps.

    abstract::The importance of herbivore-plant and soil biota-plant interactions in terrestrial ecosystems is amply recognized, but the effects of aboveground herbivores on soil biota remain challenging to predict. To find global patterns in belowground responses to vertebrate herbivores, we performed a meta-analysis of studies th...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.13675

    authors: Andriuzzi WS,Wall DH

    更新日期:2017-09-01 00:00:00

  • Feasting on terrestrial organic matter: Dining in a dark lake changes microbial decomposition.

    abstract::Boreal lakes are major components of the global carbon cycle, partly because of sediment-bound heterotrophic microorganisms that decompose within-lake and terrestrially derived organic matter (t-OM). The ability for sediment bacteria to break down and alter t-OM may depend on environmental characteristics and communit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14391

    authors: Fitch A,Orland C,Willer D,Emilson EJS,Tanentzap AJ

    更新日期:2018-11-01 00:00:00

  • Student's tutorial on bloom hypotheses in the context of phytoplankton annual cycles.

    abstract::Phytoplankton blooms are elements in repeating annual cycles of phytoplankton biomass and they have significant ecological and biogeochemical consequences. Temporal changes in phytoplankton biomass are governed by complex predator-prey interactions and physically driven variations in upper water column growth conditio...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13858

    authors: Behrenfeld MJ,Boss ES

    更新日期:2018-01-01 00:00:00

  • Land use for animal production in global change studies: Defining and characterizing a framework.

    abstract::Land use for animal production influences the earth system in a variety of ways, including local-scale modification to biodiversity, soils, and nutrient cycling; regional changes in albedo and hydrology; and global-scale changes in greenhouse gas and aerosol concentrations. Pasture is furthermore the single most exten...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13732

    authors: Phelps LN,Kaplan JO

    更新日期:2017-11-01 00:00:00

  • Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea.

    abstract::As the Earth's temperature continues to rise, coral bleaching events become more frequent. Some of the most affected reef ecosystems are located in poorly monitored waters, and thus, the extent of the damage is unknown. We propose the use of marine heatwaves (MHWs) as a new approach for detecting coral reef zones susc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14652

    authors: Genevier LGC,Jamil T,Raitsos DE,Krokos G,Hoteit I

    更新日期:2019-07-01 00:00:00

  • Four decades of functional community change reveals gradual trends and low interlinkage across trophic groups in a large marine ecosystem.

    abstract::The rate at which biological diversity is altered on both land and in the sea, makes temporal community development a critical and fundamental part of understanding global change. With advancements in trait-based approaches, the focus on the impact of temporal change has shifted towards its potential effects on the fu...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14552

    authors: Törnroos A,Pecuchet L,Olsson J,Gårdmark A,Blomqvist M,Lindegren M,Bonsdorff E

    更新日期:2018-12-20 00:00:00

  • Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages.

    abstract::White light-emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13615

    authors: Davies TW,Bennie J,Cruse D,Blumgart D,Inger R,Gaston KJ

    更新日期:2017-07-01 00:00:00

  • Forest bees are replaced in agricultural and urban landscapes by native species with different phenologies and life-history traits.

    abstract::Anthropogenic landscapes are associated with biodiversity loss and large shifts in species composition and traits. These changes predict the identities of winners and losers of future global change, and also reveal which environmental variables drive a taxon's response to land use change. We explored how the biodivers...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13921

    authors: Harrison T,Gibbs J,Winfree R

    更新日期:2018-01-01 00:00:00

  • Risk of genetic maladaptation due to climate change in three major European tree species.

    abstract::Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnera...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13802

    authors: Frank A,Howe GT,Sperisen C,Brang P,Clair JBS,Schmatz DR,Heiri C

    更新日期:2017-12-01 00:00:00

  • Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks.

    abstract::Most tree roots on Earth form a symbiosis with either ecto- or arbuscular mycorrhizal fungi. Nitrogen fertilization is hypothesized to favor arbuscular mycorrhizal tree species at the expense of ectomycorrhizal species due to differences in fungal nitrogen acquisition strategies, and this may alter soil carbon balance...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14368

    authors: Averill C,Dietze MC,Bhatnagar JM

    更新日期:2018-10-01 00:00:00

  • Moisture-induced greening of the South Asia over the past three decades.

    abstract::South Asia experienced a weakening of summer monsoon circulation in the past several decades, resulting in rainfall decline in wet regions. In comparison with other tropical ecosystems, quantitative assessments of the extent and triggers of vegetation change are lacking in assessing climate-change impacts over South A...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13762

    authors: Wang X,Wang T,Liu D,Guo H,Huang H,Zhao Y

    更新日期:2017-11-01 00:00:00

  • From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach.

    abstract::Maps of continental-scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time-scales. User groups with an interest in past land cover include the clim...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12776

    authors: Fyfe RM,Woodbridge J,Roberts N

    更新日期:2015-03-01 00:00:00

  • Treeline advances along the Urals mountain range - driven by improved winter conditions?

    abstract::High-altitude treelines are temperature-limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest-tundra ecotones have changed during the last century along the Ural mountains. In the South, North, ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12613

    authors: Hagedorn F,Shiyatov SG,Mazepa VS,Devi NM,Grigor'ev AA,Bartysh AA,Fomin VV,Kapralov DS,Terent'ev M,Bugman H,Rigling A,Moiseev PA

    更新日期:2014-11-01 00:00:00

  • An iron cycle cascade governs the response of equatorial Pacific ecosystems to climate change.

    abstract::Earth System Models project that global climate change will reduce ocean net primary production (NPP), upper trophic level biota biomass and potential fisheries catches in the future, especially in the eastern equatorial Pacific. However, projections from Earth System Models are undermined by poorly constrained assump...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15316

    authors: Tagliabue A,Barrier N,Du Pontavice H,Kwiatkowski L,Aumont O,Bopp L,Cheung WWL,Gascuel D,Maury O

    更新日期:2020-09-24 00:00:00