Decomposition nitrogen is better retained than simulated deposition from mineral amendments in a temperate forest.

Abstract:

:Nitrogen (N) deposition (NDEP ) drives forest carbon (C) sequestration but the size of this effect is still uncertain. In the field, an estimate of these effects can be obtained by applying mineral N fertilizers over the soil or forest canopy. A 15 N label in the fertilizer can be then used to trace the movement of the added N into ecosystem pools and deduce a C effect. However, N recycling via litter decomposition provides most of the nutrition for trees, even under heavy NDEP inputs. If this recycled litter nitrogen is retained in ecosystem pools differently to added mineral N, then estimates of the effects of NDEP on the relative change in C (∆C/∆N) based on short-term isotope-labelled mineral fertilizer additions should be questioned. We used 15 N labelled litter to track decomposed N in the soil system (litter, soils, microbes, and roots) over 18 months in a Sitka spruce plantation and directly compared the fate of this 15 N to an equivalent amount in simulated NDEP treatments. By the end of the experiment, three times as much 15 N was retained in the O and A soil layers when N was derived from litter decomposition than from mineral N additions (60% and 20%, respectively), primarily because of increased recovery in the O layer. Roots expressed slightly more 15 N tracer from litter decomposition than from simulated mineral NDEP (7.5% and 4.5%) and compared to soil recovery, expressed proportionally more 15 N in the A layer than the O layer, potentially indicating uptake of organic N from decomposition. These results suggest effects of NDEP on forest ∆C/∆N may not be apparent from mineral 15 N tracer experiments alone. Given the importance of N recycling, an important but underestimated effect of NDEP is its influence on the rate of N release from litter.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Nair RK,Perks MP,Mencuccini M

doi

10.1111/gcb.13450

subject

Has Abstract

pub_date

2017-04-01 00:00:00

pages

1711-1724

issue

4

eissn

1354-1013

issn

1365-2486

journal_volume

23

pub_type

杂志文章
  • Biomass consumption by surface fires across Earth's most fire prone continent.

    abstract::Landscape fire is a key but poorly understood component of the global carbon cycle. Predicting biomass consumption by fire at large spatial scales is essential to understanding carbon dynamics and hence how fire management can reduce greenhouse gas emissions and increase ecosystem carbon storage. An Australia-wide fie...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14460

    authors: Murphy BP,Prior LD,Cochrane MA,Williamson GJ,Bowman DMJS

    更新日期:2019-01-01 00:00:00

  • Calcification is not the Achilles' heel of cold-water corals in an acidifying ocean.

    abstract::Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold-water corals are even more vulnerable as they live in areas where aragonite saturation (Ωara ) is low...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12867

    authors: Rodolfo-Metalpa R,Montagna P,Aliani S,Borghini M,Canese S,Hall-Spencer JM,Foggo A,Milazzo M,Taviani M,Houlbrèque F

    更新日期:2015-06-01 00:00:00

  • Dynamic habitat suitability modelling reveals rapid poleward distribution shift in a mobile apex predator.

    abstract::Many taxa are undergoing distribution shifts in response to anthropogenic climate change. However, detecting a climate signal in mobile species is difficult due to their wide-ranging, patchy distributions, often driven by natural climate variability. For example, difficulties associated with assessing pelagic fish dis...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13129

    authors: Hill NJ,Tobin AJ,Reside AE,Pepperell JG,Bridge TC

    更新日期:2016-03-01 00:00:00

  • Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems.

    abstract::Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters infl...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.13059

    authors: Cloern JE,Abreu PC,Carstensen J,Chauvaud L,Elmgren R,Grall J,Greening H,Johansson JO,Kahru M,Sherwood ET,Xu J,Yin K

    更新日期:2016-02-01 00:00:00

  • Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada.

    abstract::Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling postfire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand ty...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14641

    authors: Day NJ,Dunfield KE,Johnstone JF,Mack MC,Turetsky MR,Walker XJ,White AL,Baltzer JL

    更新日期:2019-07-01 00:00:00

  • Acidification effects on biofouling communities: winners and losers.

    abstract::How ocean acidification affects marine life is a major concern for science and society. However, its impacts on encrusting biofouling communities, that are both the initial colonizers of hard substrata and of great economic importance, are almost unknown. We showed that community composition changed significantly, fro...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12841

    authors: Peck LS,Clark MS,Power D,Reis J,Batista FM,Harper EM

    更新日期:2015-05-01 00:00:00

  • Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model.

    abstract::Mesophyll conductance (gm ) is known to affect plant photosynthesis. However, gm is rarely explicitly considered in land surface models (LSMs), with the consequence that its role in ecosystem and large-scale carbon and water fluxes is poorly understood. In particular, the different magnitudes of gm across plant functi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14604

    authors: Knauer J,Zaehle S,De Kauwe MG,Bahar NHA,Evans JR,Medlyn BE,Reichstein M,Werner C

    更新日期:2019-05-01 00:00:00

  • Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.

    abstract::Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12957

    authors: Wiesmeier M,Munro S,Barthold F,Steffens M,Schad P,Kögel-Knabner I

    更新日期:2015-10-01 00:00:00

  • Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations.

    abstract::The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12391

    authors: Loranty MM,Berner LT,Goetz SJ,Jin Y,Randerson JT

    更新日期:2014-02-01 00:00:00

  • Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO(2) against measurements from an 11-year FACE experiment on grazed pasture.

    abstract::Ecosystem models play a crucial role in understanding and evaluating the combined impacts of rising atmospheric CO2 concentration and changing climate on terrestrial ecosystems. However, we are not aware of any studies where the capacity of models to simulate intra- and inter-annual variation in responses to elevated ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12358

    authors: Li FY,Newton PC,Lieffering M

    更新日期:2014-01-01 00:00:00

  • Linking root respiration to chemistry and morphology across species.

    abstract::Root respiration is a critical physiological trait involved in root resource acquisition strategies, yet it is less represented in root trait syndrome. Here we compiled a large dataset of root respiration associated with root chemical and morphological traits from 245 plant species. Our results demonstrated that root ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15391

    authors: Han M,Zhu B

    更新日期:2021-01-01 00:00:00

  • Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings.

    abstract::Simultaneously with warming climate, other climatic and environmental factors are also changing. Here, we investigated for the first time the effects of elevated temperature, increased ultraviolet-B (UVB) radiation, fertilization and all combinations of these on the growth, secondary chemistry and needle structure of ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12464

    authors: Virjamo V,Sutinen S,Julkunen-Tiitto R

    更新日期:2014-07-01 00:00:00

  • Shifts in coralline algae, macroalgae, and coral juveniles in the Great Barrier Reef associated with present-day ocean acidification.

    abstract::Seawater acidification from increasing CO2 is often enhanced in coastal waters due to elevated nutrients and sedimentation. Our understanding of the effects of ocean and coastal acidification on present-day ecosystems is limited. Here we use data from three independent large-scale reef monitoring programs to assess co...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14985

    authors: Smith JN,Mongin M,Thompson A,Jonker MJ,De'ath G,Fabricius KE

    更新日期:2020-02-12 00:00:00

  • Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    abstract::Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13633

    authors: Dalcin Martins P,Hoyt DW,Bansal S,Mills CT,Tfaily M,Tangen BA,Finocchiaro RG,Johnston MD,McAdams BC,Solensky MJ,Smith GJ,Chin YP,Wilkins MJ

    更新日期:2017-08-01 00:00:00

  • Points of view matter when assessing biodiversity vulnerability to environmental changes.

    abstract::We can expect different levels of vulnerability depending on the paradigm used to determine the mechanisms that will alter biodiversity under climate change. A multi-paradigm perspective is necessary to get the full picture of biodiversity vulnerability. This is a commentary on Kling et al., 26, 2798-2813. ...

    journal_title:Global change biology

    pub_type: 评论,杂志文章

    doi:10.1111/gcb.15054

    authors: Ordonez A

    更新日期:2020-05-01 00:00:00

  • The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores.

    abstract::The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13257

    authors: Ding J,Li F,Yang G,Chen L,Zhang B,Liu L,Fang K,Qin S,Chen Y,Peng Y,Ji C,He H,Smith P,Yang Y

    更新日期:2016-08-01 00:00:00

  • Evapotranspiration and water yield of a pine-broadleaf forest are not altered by long-term atmospheric [CO2 ] enrichment under native or enhanced soil fertility.

    abstract::Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosy...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14363

    authors: Ward EJ,Oren R,Seok Kim H,Kim D,Tor-Ngern P,Ewers BE,McCarthy HR,Oishi AC,Pataki DE,Palmroth S,Phillips NG,Schäfer KVR

    更新日期:2018-10-01 00:00:00

  • Global environmental changes: setting priorities for Latin American coastal habitats.

    abstract::As the effects of the Global Climate Changes on the costal regions of Central and South Americas advance, there is proportionally little research being made to understand such impacts. This commentary puts forward a series of propositions of strategies to improve performance of Central and South American science and p...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12186

    authors: Turra A,Cróquer A,Carranza A,Mansilla A,Areces AJ,Werlinger C,Martínez-Bayón C,Nassar CA,Plastino E,Schwindt E,Scarabino F,Chow F,Figueroa FL,Berchez F,Hall-Spencer JM,Soto LA,Buckeridge MS,Copertino MS,de Széchy MT,

    更新日期:2013-07-01 00:00:00

  • Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

    abstract::With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12482

    authors: Gilroy JJ,Woodcock P,Edwards FA,Wheeler C,Medina Uribe CA,Haugaasen T,Edwards DP

    更新日期:2014-07-01 00:00:00

  • Four decades of plant community change along a continental gradient of warming.

    abstract::Many studies of individual sites have revealed biotic changes consistent with climate warming (e.g., upward elevational distribution shifts), but our understanding of the tremendous variation among studies in the magnitude of such biotic changes is minimal. In this study, we resurveyed forest vegetation plots 40 years...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14568

    authors: Becker-Scarpitta A,Vissault S,Vellend M

    更新日期:2019-05-01 00:00:00

  • Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale.

    abstract::Pollinators provide crucial ecosystem services that underpin to wild plant reproduction and yields of insect-pollinated crops. Understanding the relative impacts of anthropogenic pressures and climate on the structure of plant-pollinator interaction networks is vital considering ongoing global change and pollinator de...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15474

    authors: Doré M,Fontaine C,Thébault E

    更新日期:2020-12-03 00:00:00

  • Temperature and soil fertility as regulators of tree line Scots pine growth and survival-implications for the acclimation capacity of northern populations.

    abstract::The acclimation capacity of leading edge tree populations is crucially important in a warming climate. Theoretical considerations suggest that adaptation through genetic change is needed, but this may be a slow process. Both positive and catastrophic outcomes have been predicted, while empirical studies have lagged be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13956

    authors: Rousi M,Possen BJMH,Ruotsalainen S,Silfver T,Mikola J

    更新日期:2018-02-01 00:00:00

  • Finding middle ground: Extending conservation beyond wilderness areas.

    abstract::We show that because of methodological improvements, the human modification map detects higher levels of land modification and is more accurate than the human footprint map across the gradient of modification globally. While we agree that protecting the world's least modified lands or wildlands is essential for conser...

    journal_title:Global change biology

    pub_type: 评论,信件

    doi:10.1111/gcb.14900

    authors: Kennedy CM,Oakleaf JR,Baruch-Mordo S,Theobald DM,Kiesecker J

    更新日期:2020-02-01 00:00:00

  • Diatoms can be an important exception to temperature-size rules at species and community levels of organization.

    abstract::Climate warming has been linked to an apparent general decrease in body sizes of ectotherms, both across and within taxa, especially in aquatic systems. Smaller body size in warmer geographical regions has also been widely observed. Since body size is a fundamental determinant of many biological attributes, climate-wa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12285

    authors: Adams GL,Pichler DE,Cox EJ,O'Gorman EJ,Seeney A,Woodward G,Reuman DC

    更新日期:2013-11-01 00:00:00

  • Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.

    abstract::Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiver...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13355

    authors: Boit A,Sakschewski B,Boysen L,Cano-Crespo A,Clement J,Garcia-Alaniz N,Kok K,Kolb M,Langerwisch F,Rammig A,Sachse R,van Eupen M,von Bloh W,Clara Zemp D,Thonicke K

    更新日期:2016-11-01 00:00:00

  • Asynchronous onset of eutrophication among shallow prairie lakes of the Northern Great Plains, Alberta, Canada.

    abstract::Coherent timing of agricultural expansion, fertilizer application, atmospheric nutrient deposition, and accelerated global warming is expected to promote synchronous fertilization of regional surface waters and coherent development of algal blooms and lake eutrophication. While broad-scale cyanobacterial expansion is ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13076

    authors: Maheaux H,Leavitt PR,Jackson LJ

    更新日期:2016-01-01 00:00:00

  • Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China.

    abstract::Controlled experiments have shown that global changes decouple the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in shifting stoichiometry that lies at the core of ecosystem functioning. However, the response of soil stoichiometry to global changes in natural ecosystems with differen...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13939

    authors: Yu Z,Wang M,Huang Z,Lin TC,Vadeboncoeur MA,Searle EB,Chen HYH

    更新日期:2018-03-01 00:00:00

  • Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater.

    abstract::Multiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15302

    authors: Burdon FJ,Bai Y,Reyes M,Tamminen M,Staudacher P,Mangold S,Singer H,Räsänen K,Joss A,Tiegs SD,Jokela J,Eggen RIL,Stamm C

    更新日期:2020-09-03 00:00:00

  • Future climate change driven sea-level rise: secondary consequences from human displacement for island biodiversity.

    abstract::Sea-level rise (SLR) due to global warming will result in the loss of many coastal areas. The direct or primary effects due to inundation and erosion from SLR are currently being assessed; however, the indirect or secondary ecological effects, such as changes caused by the displacement of human populations, have not b...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02736.x

    authors: Wetzel FT,Kissling WD,Beissmann H,Penn DJ

    更新日期:2012-09-01 00:00:00

  • Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms.

    abstract::Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13652

    authors: Lefevre S,McKenzie DJ,Nilsson GE

    更新日期:2017-09-01 00:00:00