Responses of belowground communities to large aboveground herbivores: Meta-analysis reveals biome-dependent patterns and critical research gaps.

Abstract:

:The importance of herbivore-plant and soil biota-plant interactions in terrestrial ecosystems is amply recognized, but the effects of aboveground herbivores on soil biota remain challenging to predict. To find global patterns in belowground responses to vertebrate herbivores, we performed a meta-analysis of studies that had measured abundance or activity of soil organisms inside and outside field exclosures (areas that excluded herbivores). Responses were often controlled by climate, ecosystem type, and dominant herbivore identity. Soil microfauna and especially root-feeding nematodes were negatively affected by herbivores in subarctic sites. In arid ecosystems, herbivore presence tended to reduce microbial biomass and nitrogen mineralization. Herbivores decreased soil respiration in subarctic ecosystems and increased it in temperate ecosystems, but had no net effect on microbial biomass or nitrogen mineralization in those ecosystems. Responses of soil fauna, microbial biomass, and nitrogen mineralization shifted from neutral to negative with increasing herbivore body size. Responses of animal decomposers tended to switch from negative to positive with increasing precipitation, but also differed among taxa, for instance Oribatida responded negatively to herbivores, whereas Collembola did not. Our findings imply that losses and gains of aboveground herbivores will interact with climate and land use changes, inducing functional shifts in soil communities. To conceptualize the mechanisms behind our findings and link them with previous theoretical frameworks, we propose two complementary approaches to predict soil biological responses to vertebrate herbivores, one focused on an herbivore body size gradient, and the other on a climate severity gradient. Major research gaps were revealed, with tropical biomes, protists, and soil macrofauna being especially overlooked.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Andriuzzi WS,Wall DH

doi

10.1111/gcb.13675

subject

Has Abstract

pub_date

2017-09-01 00:00:00

pages

3857-3868

issue

9

eissn

1354-1013

issn

1365-2486

journal_volume

23

pub_type

杂志文章,meta分析
  • Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance.

    abstract::Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15283

    authors: Olid C,Klaminder J,Monteux S,Johansson M,Dorrepaal E

    更新日期:2020-10-01 00:00:00

  • Marine-terminating glaciers sustain high productivity in Greenland fjords.

    abstract::Accelerated mass loss from the Greenland ice sheet leads to glacier retreat and an increasing input of glacial meltwater to the fjords and coastal waters around Greenland. These high latitude ecosystems are highly productive and sustain important fisheries, yet it remains uncertain how they will respond to future chan...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13801

    authors: Meire L,Mortensen J,Meire P,Juul-Pedersen T,Sejr MK,Rysgaard S,Nygaard R,Huybrechts P,Meysman FJR

    更新日期:2017-12-01 00:00:00

  • Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites.

    abstract::We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15314

    authors: Nelson JA,Pérez-Priego O,Zhou S,Poyatos R,Zhang Y,Blanken PD,Gimeno TE,Wohlfahrt G,Desai AR,Gioli B,Limousin JM,Bonal D,Paul-Limoges E,Scott RL,Varlagin A,Fuchs K,Montagnani L,Wolf S,Delpierre N,Berveiller D,Gharu

    更新日期:2020-12-01 00:00:00

  • Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China.

    abstract::Controlled experiments have shown that global changes decouple the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in shifting stoichiometry that lies at the core of ecosystem functioning. However, the response of soil stoichiometry to global changes in natural ecosystems with differen...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13939

    authors: Yu Z,Wang M,Huang Z,Lin TC,Vadeboncoeur MA,Searle EB,Chen HYH

    更新日期:2018-03-01 00:00:00

  • Biogeographic variation in temperature sensitivity of decomposition in forest soils.

    abstract::Determining soil carbon (C) responses to rising temperature is critical for projections of the feedbacks between terrestrial ecosystems, C cycle, and climate change. However, the direction and magnitude of this feedback remain highly uncertain due largely to our limited understanding of the spatial heterogeneity of so...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14838

    authors: Li J,Nie M,Pendall E,Reich PB,Pei J,Noh NJ,Zhu T,Li B,Fang C

    更新日期:2020-03-01 00:00:00

  • Elevated atmospheric [CO2 ] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves.

    abstract::Wheat production will be impacted by increasing concentration of atmospheric CO2 [CO2 ], which is expected to rise from about 400 μmol mol(-1) in 2015 to 550 μmol mol(-1) by 2050. Changes to plant physiology and crop responses from elevated [CO2 ] (e[CO2 ]) are well documented for some environments, but field-level re...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13263

    authors: Fitzgerald GJ,Tausz M,O'Leary G,Mollah MR,Tausz-Posch S,Seneweera S,Mock I,Löw M,Partington DL,McNeil D,Norton RM

    更新日期:2016-06-01 00:00:00

  • Aphid-willow interactions in a high Arctic ecosystem: responses to raised temperature and goose disturbance.

    abstract::Recently, there have been several studies using open top chambers (OTCs) or cloches to examine the response of Arctic plant communities to artificially elevated temperatures. Few, however, have investigated multitrophic systems, or the effects of both temperature and vertebrate grazing treatments on invertebrates. Thi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12284

    authors: Gillespie MA,Jónsdóttir IS,Hodkinson ID,Cooper EJ

    更新日期:2013-12-01 00:00:00

  • Lifeform indicators reveal large-scale shifts in plankton across the North-West European shelf.

    abstract::Increasing direct human pressures on the marine environment, coupled with climate-driven changes, is a concern to marine ecosystems globally. This requires the development and monitoring of ecosystem indicators for effective management and adaptation planning. Plankton lifeforms (broad functional groups) are sensitive...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15066

    authors: Bedford J,Ostle C,Johns DG,Atkinson A,Best M,Bresnan E,Machairopoulou M,Graves CA,Devlin M,Milligan A,Pitois S,Mellor A,Tett P,McQuatters-Gollop A

    更新日期:2020-06-01 00:00:00

  • Carbon emissions from agricultural expansion and intensification in the Chaco.

    abstract::Carbon emissions from land-use changes in tropical dry forest systems are poorly understood, although they are likely globally significant. The South American Chaco has recently emerged as a hot spot of agricultural expansion and intensification, as cattle ranching and soybean cultivation expand into forests, and as s...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13521

    authors: Baumann M,Gasparri I,Piquer-Rodríguez M,Gavier Pizarro G,Griffiths P,Hostert P,Kuemmerle T

    更新日期:2017-05-01 00:00:00

  • Vegetation cover-another dominant factor in determining global water resources in forested regions.

    abstract::Forested catchments provide critically important water resources. Due to dramatic global forest change over the past decades, the importance of including forest or vegetation change in the assessment of water resources under climate change has been highly recognized by Intergovernmental Panel on Climate Change (IPCC);...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13983

    authors: Wei X,Li Q,Zhang M,Giles-Hansen K,Liu W,Fan H,Wang Y,Zhou G,Piao S,Liu S

    更新日期:2018-02-01 00:00:00

  • Plant diversity loss reduces soil respiration across terrestrial ecosystems.

    abstract::The rapid global biodiversity loss has led to the decline in ecosystem function. Despite the critical importance of soil respiration (Rs) in the global carbon and nutrient cycles, how plant diversity loss affects Rs remains uncertain. Here we present a meta-analysis using 446 paired observations from 95 published stud...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14567

    authors: Chen X,Chen HYH

    更新日期:2019-01-06 00:00:00

  • Phenology and productivity in a montane bird assemblage: Trends and responses to elevation and climate variation.

    abstract::Climate variation has been linked to historical and predicted future distributions and dynamics of wildlife populations. However, demographic mechanisms underlying these changes remain poorly understood. Here, we assessed variation and trends in climate (annual snowfall and spring temperature anomalies) and avian demo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14538

    authors: Saracco JF,Siegel RB,Helton L,Stock SL,DeSante DF

    更新日期:2019-03-01 00:00:00

  • Vegetation growth enhancement in urban environments of the Conterminous United States.

    abstract::Cities are natural laboratories for studying vegetation responses to global environmental changes because of their climate, atmospheric, and biogeochemical conditions. However, few holistic studies have been conducted on the impact of urbanization on vegetation growth. We decomposed the overall impacts of urbanization...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14317

    authors: Jia W,Zhao S,Liu S

    更新日期:2018-09-01 00:00:00

  • Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2 -acidification.

    abstract::Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13987

    authors: Davis BE,Flynn EE,Miller NA,Nelson FA,Fangue NA,Todgham AE

    更新日期:2018-02-01 00:00:00

  • Miami heat: Urban heat islands influence the thermal suitability of habitats for ectotherms.

    abstract::The urban heat island effect, where urban areas exhibit higher temperatures than less-developed suburban and natural habitats, occurs in cities across the globe and is well understood from a physical perspective and at broad spatial scales. However, very little is known about how thermal variation caused by urbanizati...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14509

    authors: Battles AC,Kolbe JJ

    更新日期:2019-02-01 00:00:00

  • Fungal community structure and function shifts with atmospheric nitrogen deposition.

    abstract::Fungal decomposition of soil organic matter depends on soil nitrogen (N) availability. This ecosystem process is being jeopardized by changes in N inputs that have resulted from a tripling of atmospheric N deposition in the last century. Soil fungi are impacted by atmospheric N deposition due to higher N availability,...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15444

    authors: Moore JAM,Anthony MA,Pec GJ,Trocha LK,Trzebny A,Geyer KM,van Diepen LTA,Frey SD

    更新日期:2020-11-07 00:00:00

  • Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions.

    abstract::Biological invasions are one of the biggest threats to global biodiversity. Marine artificial structures are proliferating worldwide and provide a haven for marine invasive species. Such structures disrupt local hydrodynamics, which can lead to the formation of oxygen-depleted microsites. The extent to which native fa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13668

    authors: Lagos ME,Barneche DR,White CR,Marshall DJ

    更新日期:2017-06-01 00:00:00

  • Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics.

    abstract::As the ocean warms, thermal tolerance of developmental stages may be a key driver of changes in the geographical distributions and abundance of marine invertebrates. Additional stressors such as ocean acidification may influence developmental thermal windows and are therefore important considerations for predicting di...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13452

    authors: Karelitz SE,Uthicke S,Foo SA,Barker MF,Byrne M,Pecorino D,Lamare MD

    更新日期:2017-02-01 00:00:00

  • Fish communities diverge in species but converge in traits over three decades of warming.

    abstract::Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait-based approaches can provide better insight than species-based (i.e. taxonomic) approaches into community assembly and ecosystem functio...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14785

    authors: McLean M,Mouillot D,Lindegren M,Villéger S,Engelhard G,Murgier J,Auber A

    更新日期:2019-11-01 00:00:00

  • Global wheat production with 1.5 and 2.0°C above pre-industrial warming.

    abstract::Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extre...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14542

    authors: Liu B,Martre P,Ewert F,Porter JR,Challinor AJ,Müller C,Ruane AC,Waha K,Thorburn PJ,Aggarwal PK,Ahmed M,Balkovič J,Basso B,Biernath C,Bindi M,Cammarano D,De Sanctis G,Dumont B,Espadafor M,Eyshi Rezaei E,Ferrise R,

    更新日期:2018-12-07 00:00:00

  • Eight decades of sampling reveal a contemporary novel fish assemblage in coastal nursery habitats.

    abstract::In order to adequately monitor biodiversity trends through time and their responses to natural or anthropogenic impacts, researchers require long time series that are often unavailable. This general lack of datasets that are several decades or longer makes establishing a background or baseline of diversity metrics dif...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13047

    authors: Barceló C,Ciannelli L,Olsen EM,Johannessen T,Knutsen H

    更新日期:2016-03-01 00:00:00

  • How ecologists define drought, and why we should do better.

    abstract::Drought, widely studied as an important driver of ecosystem dynamics, is predicted to increase in frequency and severity globally. To study drought, ecologists must define or at least operationalize what constitutes a drought. How this is accomplished in practice is unclear, particularly given that climatologists have...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14747

    authors: Slette IJ,Post AK,Awad M,Even T,Punzalan A,Williams S,Smith MD,Knapp AK

    更新日期:2019-10-01 00:00:00

  • The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States.

    abstract::Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interacti...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13816

    authors: Lu X,Zhou Y,Liu Y,Le Page Y

    更新日期:2018-02-01 00:00:00

  • Reproduction and seedling establishment of Picea glauca across the northernmost forest-tundra region in Canada.

    abstract::The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02769.x

    authors: Walker X,Henry GHR,McLeod K,Hofgaard A

    更新日期:2012-10-01 00:00:00

  • High ecosystem stability of evergreen broadleaf forests under severe droughts.

    abstract::Global increase in drought occurrences threatens the stability of terrestrial ecosystem functioning. Evergreen broadleaf forests (EBFs) keep leaves throughout the year, and therefore could experience higher drought risks than other biomes. However, the recent temporal variability of global vegetation productivity or l...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14748

    authors: Huang K,Xia J

    更新日期:2019-10-01 00:00:00

  • Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China.

    abstract::Treeline responses to environmental changes describe an important phenomenon in global change research. Often conflicting results and generally too short observations are, however, still challenging our understanding of climate-induced treeline dynamics. Here, we use a state-of-the-art dendroecological approach to rec...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13963

    authors: Du H,Liu J,Li MH,Büntgen U,Yang Y,Wang L,Wu Z,He HS

    更新日期:2018-03-01 00:00:00

  • Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis.

    abstract::The temperature dependence of the reaction kinetics of the Rubisco enzyme implies that, at the level of a chloroplast, the response of photosynthesis to rising atmospheric CO2 concentration (Ca ) will increase with increasing air temperature. Vegetation models incorporating this interaction predict that the response o...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析,评审

    doi:10.1111/gcb.12962

    authors: Baig S,Medlyn BE,Mercado LM,Zaehle S

    更新日期:2015-12-01 00:00:00

  • A big-microsite framework for soil carbon modeling.

    abstract::Soil carbon cycling processes potentially play a large role in biotic feedbacks to climate change, but little agreement exists at present on what the core of numerical soil C cycling models should look like. In contrast, most canopy models of photosynthesis and leaf gas exchange share a common 'Farquhaur-model' core s...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12718

    authors: Davidson EA,Savage KE,Finzi AC

    更新日期:2014-12-01 00:00:00

  • Upslope development of a tidal marsh as a function of upland land use.

    abstract::To thrive in a time of rapid sea-level rise, tidal marshes will need to migrate upslope into adjacent uplands. Yet little is known about the mechanics of this process, especially in urbanized estuaries, where the adjacent upland is likely to be a mowed lawn rather than a wooded natural area. We studied marsh migration...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13398

    authors: Anisfeld SC,Cooper KR,Kemp AC

    更新日期:2017-02-01 00:00:00

  • Is it getting hot in here? Adjustment of hydraulic parameters in six boreal and temperate tree species after 5 years of warming.

    abstract::Global temperatures (T) are rising, and for many plant species, their physiological response to this change has not been well characterized. In particular, how hydraulic parameters may change has only been examined experimentally for a few species. To address this, we measured characteristics of the hydraulic architec...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13323

    authors: McCulloh KA,Petitmermet J,Stefanski A,Rice KE,Rich RL,Montgomery RA,Reich PB

    更新日期:2016-12-01 00:00:00