Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

Abstract:

:With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether benefits are maximized by including many small features throughout the landscape ('land-sharing' agriculture) or a few large contiguous blocks alongside intensive farmland ('land-sparing' agriculture). In this study, we are the first to integrate carbon storage alongside multi-taxa biodiversity assessments to compare land-sparing and land-sharing frameworks. We do so by sampling carbon stocks and biodiversity (birds and dung beetles) in landscapes containing agriculture and forest within the Colombian Chocó-Andes, a zone of high global conservation priority. We show that woodland fragments embedded within a matrix of cattle pasture hold less carbon per unit area than contiguous primary or advanced secondary forests (>15 years). Farmland sites also support less diverse bird and dung beetle communities than contiguous forests, even when farmland retains high levels of woodland habitat cover. Landscape simulations based on these data suggest that land-sparing strategies would be more beneficial for both carbon storage and biodiversity than land-sharing strategies across a range of production levels. Biodiversity benefits of land-sparing are predicted to be similar whether spared lands protect primary or advanced secondary forests, owing to the close similarity of bird and dung beetle communities between the two forest classes. Land-sparing schemes that encourage the protection and regeneration of natural forest blocks thus provide a synergy between carbon and biodiversity conservation, and represent a promising strategy for reducing the negative impacts of agriculture on tropical ecosystems. However, further studies examining a wider range of ecosystem services will be necessary to fully understand the links between land-allocation strategies and long-term ecosystem service provision.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Gilroy JJ,Woodcock P,Edwards FA,Wheeler C,Medina Uribe CA,Haugaasen T,Edwards DP

doi

10.1111/gcb.12482

subject

Has Abstract

pub_date

2014-07-01 00:00:00

pages

2162-72

issue

7

eissn

1354-1013

issn

1365-2486

journal_volume

20

pub_type

杂志文章
  • Low phosphorus supply constrains plant responses to elevated CO2 : A meta-analysis.

    abstract::Phosphorus (P) is an essential macro-nutrient required for plant metabolism and growth. Low P availability could potentially limit plant responses to elevated carbon dioxide (eCO2 ), but consensus has yet to be reached on the extent of this limitation. Here, based on data from experiments that manipulated both CO2 and...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.15277

    authors: Jiang M,Caldararu S,Zhang H,Fleischer K,Crous KY,Yang J,De Kauwe MG,Ellsworth DS,Reich PB,Tissue DT,Zaehle S,Medlyn BE

    更新日期:2020-10-01 00:00:00

  • Restricted gene flow and local adaptation highlight the vulnerability of high-latitude reefs to rapid environmental change.

    abstract::Global climate change poses a serious threat to the future health of coral reef ecosystems. This calls for management strategies that are focused on maximizing the evolutionary potential of coral reefs. Fundamental to this is an accurate understanding of the spatial genetic structure in dominant reef-building coral sp...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13639

    authors: Thomas L,Kennington WJ,Evans RD,Kendrick GA,Stat M

    更新日期:2017-06-01 00:00:00

  • The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance.

    abstract::Global change is affecting terrestrial carbon (C) balances. The effect of climate on ecosystem C balance has been largely explored, but the roles of other concurrently changing factors, such as diversity and nutrient availability, remain elusive. We used eddy-covariance C-flux measurements from 62 ecosystems from whic...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15385

    authors: Fernández-Martínez M,Sardans J,Musavi T,Migliavacca M,Iturrate-Garcia M,Scholes RJ,Peñuelas J,Janssens IA

    更新日期:2020-12-01 00:00:00

  • Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater.

    abstract::Multiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15302

    authors: Burdon FJ,Bai Y,Reyes M,Tamminen M,Staudacher P,Mangold S,Singer H,Räsänen K,Joss A,Tiegs SD,Jokela J,Eggen RIL,Stamm C

    更新日期:2020-09-03 00:00:00

  • Native and exotic plant cover vary inversely along a climate gradient 11 years following stand-replacing wildfire in a dry coniferous forest, Oregon, USA.

    abstract::Community re-assembly following future disturbances will often occur under warmer and more moisture-limited conditions than when current communities assembled. Because the establishment stage is regularly the most sensitive to climate and competition, the trajectory of recovery from disturbance in a changing environme...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12775

    authors: Dodson EK,Root HT

    更新日期:2015-02-01 00:00:00

  • "Got rats?" Global environmental costs of thirst for milk include acute biodiversity impacts linked to dairy feed production.

    abstract::Rodents damaging alfalfa crops typically destined for export to booming Eastern markets often cause economical losses to farmers, but management interventions attempting to control rodents (i.e., use of rodenticides) are themselves damaging to biodiversity. These damages resonate beyond dairy feed producing regions th...

    journal_title:Global change biology

    pub_type: 信件

    doi:10.1111/gcb.14170

    authors: Luque-Larena JJ,Mougeot F,Arroyo B,Lambin X

    更新日期:2018-07-01 00:00:00

  • Global patterns and predictors of stem CO2 efflux in forest ecosystems.

    abstract::Stem CO2 efflux (ES) plays an important role in the carbon balance of forest ecosystems. However, its primary controls at the global scale are poorly understood and observation-based global estimates are lacking. We synthesized data from 121 published studies across global forest ecosystems and examined the relationsh...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13188

    authors: Yang J,He Y,Aubrey DP,Zhuang Q,Teskey RO

    更新日期:2016-04-01 00:00:00

  • Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems.

    abstract::Identifying the type and strength of interactions between local anthropogenic and other stressors can help to set achievable management targets for degraded marine ecosystems and support their resilience by identifying local actions. We undertook a meta-analysis, using data from 118 studies to test the hypothesis that...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析,评审

    doi:10.1111/gcb.12619

    authors: Strain EM,Thomson RJ,Micheli F,Mancuso FP,Airoldi L

    更新日期:2014-11-01 00:00:00

  • Can carbon emissions from tropical deforestation drop by 50% in 5 years?

    abstract::Halving carbon emissions from tropical deforestation by 2020 could help bring the international community closer to the agreed goal of <2 degree increase in global average temperature change and is consistent with a target set last year by the governments, corporations, indigenous peoples' organizations and non-govern...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13153

    authors: Zarin DJ,Harris NL,Baccini A,Aksenov D,Hansen MC,Azevedo-Ramos C,Azevedo T,Margono BA,Alencar AC,Gabris C,Allegretti A,Potapov P,Farina M,Walker WS,Shevade VS,Loboda TV,Turubanova S,Tyukavina A

    更新日期:2016-04-01 00:00:00

  • Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments.

    abstract::Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless, in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg(-1) ) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic communi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12109

    authors: Thomsen J,Casties I,Pansch C,Körtzinger A,Melzner F

    更新日期:2013-04-01 00:00:00

  • Climatic changes can drive the loss of genetic diversity in a Neotropical savanna tree species.

    abstract::The high rates of future climatic changes, compared with the rates reported for past changes, may hamper species adaptation to new climates or the tracking of suitable conditions, resulting in significant loss of genetic diversity. Trees are dominant species in many biomes and because they are long-lived, they may not...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13685

    authors: Lima JS,Ballesteros-Mejia L,Lima-Ribeiro MS,Collevatti RG

    更新日期:2017-11-01 00:00:00

  • Acidification effects on biofouling communities: winners and losers.

    abstract::How ocean acidification affects marine life is a major concern for science and society. However, its impacts on encrusting biofouling communities, that are both the initial colonizers of hard substrata and of great economic importance, are almost unknown. We showed that community composition changed significantly, fro...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12841

    authors: Peck LS,Clark MS,Power D,Reis J,Batista FM,Harper EM

    更新日期:2015-05-01 00:00:00

  • Modeling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology.

    abstract::Understanding the drivers of phenological events is vital for forecasting species' responses to climate change. We developed flexible Bayesian survival regression models to assess a 29-year, individual-level time series of flowering phenology from four taxa of Japanese cherry trees (Prunus spachiana, Prunus × yedoensi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12364

    authors: Allen JM,Terres MA,Katsuki T,Iwamoto K,Kobori H,Higuchi H,Primack RB,Wilson AM,Gelfand A,Silander JA Jr

    更新日期:2014-04-01 00:00:00

  • Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.

    abstract::Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature-induced drought stress. However, variations in tree growth alone do not revea...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12893

    authors: Walker XJ,Mack MC,Johnstone JF

    更新日期:2015-08-01 00:00:00

  • Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings.

    abstract::Simultaneously with warming climate, other climatic and environmental factors are also changing. Here, we investigated for the first time the effects of elevated temperature, increased ultraviolet-B (UVB) radiation, fertilization and all combinations of these on the growth, secondary chemistry and needle structure of ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12464

    authors: Virjamo V,Sutinen S,Julkunen-Tiitto R

    更新日期:2014-07-01 00:00:00

  • The dynamics of architectural complexity on coral reefs under climate change.

    abstract::One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef-building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamic...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12698

    authors: Bozec YM,Alvarez-Filip L,Mumby PJ

    更新日期:2015-01-01 00:00:00

  • Tropical cyclone cooling combats region-wide coral bleaching.

    abstract::Coral bleaching has become more frequent and widespread as a result of rising sea surface temperature (SST). During a regional scale SST anomaly, reef exposure to thermal stress is patchy in part due to physical factors that reduce SST to provide thermal refuge. Tropical cyclones (TCs - hurricanes, typhoons) can induc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12541

    authors: Carrigan AD,Puotinen M

    更新日期:2014-05-01 00:00:00

  • An optimality-based model explains seasonal variation in C3 plant photosynthetic capacity.

    abstract::The maximum rate of carboxylation (Vcmax ) is an essential leaf trait determining the photosynthetic capacity of plants. Existing approaches for estimating Vcmax at large scale mainly rely on empirical relationships with proxies such as leaf nitrogen/chlorophyll content or hyperspectral reflectance, or on complicated ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15276

    authors: Jiang C,Ryu Y,Wang H,Keenan TF

    更新日期:2020-07-12 00:00:00

  • Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts.

    abstract::Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological a...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12916

    authors: Frank D,Reichstein M,Bahn M,Thonicke K,Frank D,Mahecha MD,Smith P,van der Velde M,Vicca S,Babst F,Beer C,Buchmann N,Canadell JG,Ciais P,Cramer W,Ibrom A,Miglietta F,Poulter B,Rammig A,Seneviratne SI,Walz A,Watte

    更新日期:2015-08-01 00:00:00

  • Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea.

    abstract::Although climate warming is affecting most marine ecosystems, the Mediterranean is showing earlier impacts. Foundation seagrasses are already experiencing a well-documented regression in the Mediterranean which could be aggravated by climate change. Here, we forecast distributions of two seagrasses and contrast predic...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14401

    authors: Chefaoui RM,Duarte CM,Serrão EA

    更新日期:2018-10-01 00:00:00

  • Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends.

    abstract::The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net prim...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12187

    authors: Piao S,Sitch S,Ciais P,Friedlingstein P,Peylin P,Wang X,Ahlström A,Anav A,Canadell JG,Cong N,Huntingford C,Jung M,Levis S,Levy PE,Li J,Lin X,Lomas MR,Lu M,Luo Y,Ma Y,Myneni RB,Poulter B,Sun Z,Wang T,Viovy

    更新日期:2013-07-01 00:00:00

  • Application of a two-pool model to soil carbon dynamics under elevated CO2.

    abstract::Elevated atmospheric CO2 concentrations increase plant productivity and affect soil microbial communities, with possible consequences for the turnover rate of soil carbon (C) pools and feedbacks to the atmosphere. In a previous analysis (Van Groenigen et al., 2014), we used experimental data to inform a one-pool model...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13074

    authors: van Groenigen KJ,Xia J,Osenberg CW,Luo Y,Hungate BA

    更新日期:2015-12-01 00:00:00

  • Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland.

    abstract::The net ecosystem CO2 exchange (NEE) drives the carbon (C) sink-source strength of northern peatlands. Since NEE represents a balance between various production and respiration fluxes, accurate predictions of its response to global changes require an in depth understanding of these underlying processes. Currently, how...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14292

    authors: Järveoja J,Nilsson MB,Gažovič M,Crill PM,Peichl M

    更新日期:2018-08-01 00:00:00

  • The climate sensitivity of carbon, timber, and species richness covaries with forest age in boreal-temperate North America.

    abstract::Climate change threatens the provisioning of forest ecosystem services and biodiversity (ESB). The climate sensitivity of ESB may vary with forest development from young to old-growth conditions as structure and composition shift over time and space. This study addresses knowledge gaps hindering implementation of adap...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14656

    authors: Thom D,Golivets M,Edling L,Meigs GW,Gourevitch JD,Sonter LJ,Galford GL,Keeton WS

    更新日期:2019-07-01 00:00:00

  • Vapor-pressure deficit and extreme climatic variables limit tree growth.

    abstract::Assessing the effect of global warming on forest growth requires a better understanding of species-specific responses to climate change conditions. Norway spruce and European beech are among the dominant tree species in Europe and are largely used by the timber industry. Their sensitivity to changes in climate and ext...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13973

    authors: Sanginés de Cárcer P,Vitasse Y,Peñuelas J,Jassey VEJ,Buttler A,Signarbieux C

    更新日期:2018-03-01 00:00:00

  • Global changes may be promoting a rise in select cyanobacteria in nutrient-poor northern lakes.

    abstract::The interacting effects of global changes-including increased temperature, altered precipitation, reduced acidification and increased dissolved organic matter loads to lakes-are anticipated to create favourable environmental conditions for cyanobacteria in northern lakes. However, responses of cyanobacteria to these g...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15189

    authors: Freeman EC,Creed IF,Jones B,Bergström AK

    更新日期:2020-09-01 00:00:00

  • Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests.

    abstract::Secondary forests (SFs) regenerating on previously deforested land account for large, expanding areas of tropical forest cover. Given that tropical forests rank among Earth's most important reservoirs of carbon and biodiversity, SFs play an increasingly pivotal role in the carbon cycle and as potential habitat for for...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14443

    authors: Lennox GD,Gardner TA,Thomson JR,Ferreira J,Berenguer E,Lees AC,Mac Nally R,Aragão LEOC,Ferraz SFB,Louzada J,Moura NG,Oliveira VHF,Pardini R,Solar RRC,Vaz-de Mello FZ,Vieira ICG,Barlow J

    更新日期:2018-12-01 00:00:00

  • Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus).

    abstract::The European spruce bark beetle Ips typographus is the most important insect pest in Central European forests. Under climate change, its phenology is presumed to be changing and mass infestations becoming more likely. While several studies have investigated climate effects across a latitudinal gradient, it remains an ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14766

    authors: Jakoby O,Lischke H,Wermelinger B

    更新日期:2019-12-01 00:00:00

  • Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem.

    abstract::Improving nitrogen (N) management for greater agricultural output while minimizing unintended environmental consequences is critical in the endeavor of feeding the growing population sustainably amid climate change. Enhanced-efficiency fertilizers (EEFs) have been developed to better synchronize fertilizer N release w...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13918

    authors: Li T,Zhang W,Yin J,Chadwick D,Norse D,Lu Y,Liu X,Chen X,Zhang F,Powlson D,Dou Z

    更新日期:2018-02-01 00:00:00

  • Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange.

    abstract::Terrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2 ) concentrations, but processes driving the IAV of net ecosystem CO2 exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated wit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14731

    authors: Fu Z,Stoy PC,Poulter B,Gerken T,Zhang Z,Wakbulcho G,Niu S

    更新日期:2019-10-01 00:00:00