Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea.

Abstract:

:Although climate warming is affecting most marine ecosystems, the Mediterranean is showing earlier impacts. Foundation seagrasses are already experiencing a well-documented regression in the Mediterranean which could be aggravated by climate change. Here, we forecast distributions of two seagrasses and contrast predicted loss with discrete regions identified on the basis of extant genetic diversity. Under the worst-case scenario, Posidonia oceanica might lose 75% of suitable habitat by 2050 and is at risk of functional extinction by 2100, whereas Cymodocea nodosa would lose only 46.5% in that scenario as losses are compensated with gained and stable areas in the Atlantic. Besides, we predict that erosion of present genetic diversity and vicariant processes can happen, as all Mediterranean genetic regions could decrease considerably in extension in future warming scenarios. The functional extinction of Posidonia oceanica would have important ecological impacts and may also lead to the release of the massive carbon stocks these ecosystems stored over millennia.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Chefaoui RM,Duarte CM,Serrão EA

doi

10.1111/gcb.14401

subject

Has Abstract

pub_date

2018-10-01 00:00:00

pages

4919-4928

issue

10

eissn

1354-1013

issn

1365-2486

journal_volume

24

pub_type

杂志文章
  • Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic.

    abstract::Arctic warming is resulting in reduced snow cover and increased shrub growth, both of which have been associated with altered land surface-atmospheric feedback processes involving sensible heat flux, ground heat flux and biogeochemical cycling. Using field measurements, we show that two common Arctic shrub species (Be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13297

    authors: Williamson SN,Barrio IC,Hik DS,Gamon JA

    更新日期:2016-11-01 00:00:00

  • Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes.

    abstract::The advent of genomic-, transcriptomic- and proteomic-based approaches has revolutionized our ability to describe marine microbial communities, including biogeography, metabolic potential and diversity, mechanisms of adaptation, and phylogeny and evolutionary history. New interdisciplinary approaches are needed to mov...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12983

    authors: Mock T,Daines SJ,Geider R,Collins S,Metodiev M,Millar AJ,Moulton V,Lenton TM

    更新日期:2016-01-01 00:00:00

  • Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis.

    abstract::The temperature dependence of the reaction kinetics of the Rubisco enzyme implies that, at the level of a chloroplast, the response of photosynthesis to rising atmospheric CO2 concentration (Ca ) will increase with increasing air temperature. Vegetation models incorporating this interaction predict that the response o...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析,评审

    doi:10.1111/gcb.12962

    authors: Baig S,Medlyn BE,Mercado LM,Zaehle S

    更新日期:2015-12-01 00:00:00

  • Effects of simulated heat waves on an experimental plant-herbivore-predator food chain.

    abstract::Greater climatic variability and extreme climatic events are currently emerging as two of the most important facets of climate change. Predicting the effects of extreme climatic events, such as heat waves, is a major challenge because they may affect both organisms and trophic interactions, leading to complex response...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12094

    authors: Sentis A,Hemptinne JL,Brodeur J

    更新日期:2013-03-01 00:00:00

  • Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.

    abstract::Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12957

    authors: Wiesmeier M,Munro S,Barthold F,Steffens M,Schad P,Kögel-Knabner I

    更新日期:2015-10-01 00:00:00

  • Quantifying variety-specific heat resistance and the potential for adaptation to climate change.

    abstract::The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy invo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13163

    authors: Tack J,Barkley A,Rife TW,Poland JA,Nalley LL

    更新日期:2016-08-01 00:00:00

  • Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests.

    abstract::Secondary forests (SFs) regenerating on previously deforested land account for large, expanding areas of tropical forest cover. Given that tropical forests rank among Earth's most important reservoirs of carbon and biodiversity, SFs play an increasingly pivotal role in the carbon cycle and as potential habitat for for...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14443

    authors: Lennox GD,Gardner TA,Thomson JR,Ferreira J,Berenguer E,Lees AC,Mac Nally R,Aragão LEOC,Ferraz SFB,Louzada J,Moura NG,Oliveira VHF,Pardini R,Solar RRC,Vaz-de Mello FZ,Vieira ICG,Barlow J

    更新日期:2018-12-01 00:00:00

  • Treeline advances along the Urals mountain range - driven by improved winter conditions?

    abstract::High-altitude treelines are temperature-limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest-tundra ecotones have changed during the last century along the Ural mountains. In the South, North, ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12613

    authors: Hagedorn F,Shiyatov SG,Mazepa VS,Devi NM,Grigor'ev AA,Bartysh AA,Fomin VV,Kapralov DS,Terent'ev M,Bugman H,Rigling A,Moiseev PA

    更新日期:2014-11-01 00:00:00

  • The greenhouse gas balance of European grasslands.

    abstract::The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12998

    authors: Chang J,Ciais P,Viovy N,Vuichard N,Sultan B,Soussana JF

    更新日期:2015-10-01 00:00:00

  • Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts.

    abstract::Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological a...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12916

    authors: Frank D,Reichstein M,Bahn M,Thonicke K,Frank D,Mahecha MD,Smith P,van der Velde M,Vicca S,Babst F,Beer C,Buchmann N,Canadell JG,Ciais P,Cramer W,Ibrom A,Miglietta F,Poulter B,Rammig A,Seneviratne SI,Walz A,Watte

    更新日期:2015-08-01 00:00:00

  • Is it getting hot in here? Adjustment of hydraulic parameters in six boreal and temperate tree species after 5 years of warming.

    abstract::Global temperatures (T) are rising, and for many plant species, their physiological response to this change has not been well characterized. In particular, how hydraulic parameters may change has only been examined experimentally for a few species. To address this, we measured characteristics of the hydraulic architec...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13323

    authors: McCulloh KA,Petitmermet J,Stefanski A,Rice KE,Rich RL,Montgomery RA,Reich PB

    更新日期:2016-12-01 00:00:00

  • Do increased summer precipitation and N deposition alter fine root dynamics in a Mojave Desert ecosystem?

    abstract::Climate change is expected to impact the amount and distribution of precipitation in the arid southwestern United States. In addition, nitrogen (N) deposition is increasing in these regions due to increased urbanization. Responses of belowground plant activity to increases in soil water content and N have shown incons...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12082

    authors: Verburg PS,Young AC,Stevenson BA,Glanzmann I,Arnone JA 3rd,Marion GM,Holmes C,Nowak RS

    更新日期:2013-03-01 00:00:00

  • On the tracks of Nitrogen deposition effects on temperate forests at their southern European range - an observational study from Italy.

    abstract::We studied forest monitoring data collected at permanent plots in Italy over the period 2000-2009 to identify the possible impact of nitrogen (N) deposition on soil chemistry, tree nutrition and growth. Average N throughfall (N-NO3 +N-NH4 ) ranged between 4 and 29 kg ha(-1)  yr(-1) , with Critical Loads (CLs) for nutr...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12552

    authors: Ferretti M,Marchetto A,Arisci S,Bussotti F,Calderisi M,Carnicelli S,Cecchini G,Fabbio G,Bertini G,Matteucci G,de Cinti B,Salvati L,Pompei E

    更新日期:2014-11-01 00:00:00

  • Leveraging plant hydraulics to yield predictive and dynamic plant leaf allocation in vegetation models with climate change.

    abstract::Plant functional traits provide a link in process-based vegetation models between plant-level physiology and ecosystem-level responses. Recent advances in physiological understanding and computational efficiency have allowed for the incorporation of plant hydraulic processes in large-scale vegetation models. However, ...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14814

    authors: Trugman AT,Anderegg LDL,Sperry JS,Wang Y,Venturas M,Anderegg WRL

    更新日期:2019-12-01 00:00:00

  • Human pressures predict species' geographic range size better than biological traits.

    abstract::Geographic range size is the manifestation of complex interactions between intrinsic species traits and extrinsic environmental conditions. It is also a fundamental ecological attribute of species and a key extinction risk correlate. Past research has primarily focused on the role of biological and environmental predi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12834

    authors: Di Marco M,Santini L

    更新日期:2015-06-01 00:00:00

  • Tree rings provide no evidence of a CO2 fertilization effect in old-growth subalpine forests of western Canada.

    abstract::Atmospheric CO2 concentrations are now 1.7 times higher than the preindustrial values. Although photosynthetic rates are hypothesized to increase in response to rising atmospheric CO2 concentrations, results from in situ experiments are inconsistent in supporting a CO2 fertilization effect of tree growth. Tree-ring da...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14561

    authors: Hararuk O,Campbell EM,Antos JA,Parish R

    更新日期:2018-12-27 00:00:00

  • Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China.

    abstract::Autumn phenology plays a critical role in regulating climate-biosphere interactions. However, the climatic drivers of autumn phenology remain unclear. In this study, we applied four methods to estimate the date of the end of the growing season (EOS) across China's temperate biomes based on a 30-year normalized differe...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13081

    authors: Liu Q,Fu YH,Zeng Z,Huang M,Li X,Piao S

    更新日期:2016-02-01 00:00:00

  • Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere.

    abstract::The relationship between the timing of recurrent biological events and seasonal climatic patterns (i.e., phenology) is a crucial ecological process. Changes in phenology are increasingly linked to global climate change. However, current evidence of phenological responses to recent climate change is subjected to substa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14423

    authors: Diovisalvi N,Odriozola M,Garcia de Souza J,Rojas Molina F,Fontanarrosa MS,Escaray R,Bustingorry J,Sanzano P,Grosman F,Zagarese H

    更新日期:2018-11-01 00:00:00

  • Four decades of plant community change along a continental gradient of warming.

    abstract::Many studies of individual sites have revealed biotic changes consistent with climate warming (e.g., upward elevational distribution shifts), but our understanding of the tremendous variation among studies in the magnitude of such biotic changes is minimal. In this study, we resurveyed forest vegetation plots 40 years...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14568

    authors: Becker-Scarpitta A,Vissault S,Vellend M

    更新日期:2019-05-01 00:00:00

  • Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change.

    abstract::Current knowledge of phenological shifts in Palearctic bird migration is largely based on data collected on migrants at their breeding grounds; little is known about the phenology of these birds at their nonbreeding grounds, and even less about that of intra-African migrants. Because climate change patterns are not un...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12857

    authors: Bussière EM,Underhill LG,Altwegg R

    更新日期:2015-06-01 00:00:00

  • Land-use conversion and changing soil carbon stocks in China's 'Grain-for-Green' Program: a synthesis.

    abstract::The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cro...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12508

    authors: Deng L,Liu GB,Shangguan ZP

    更新日期:2014-11-01 00:00:00

  • Warming and drought reduce temperature sensitivity of nitrogen transformations.

    abstract::Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12063

    authors: Novem Auyeung DS,Suseela V,Dukes JS

    更新日期:2013-02-01 00:00:00

  • Future climate change driven sea-level rise: secondary consequences from human displacement for island biodiversity.

    abstract::Sea-level rise (SLR) due to global warming will result in the loss of many coastal areas. The direct or primary effects due to inundation and erosion from SLR are currently being assessed; however, the indirect or secondary ecological effects, such as changes caused by the displacement of human populations, have not b...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02736.x

    authors: Wetzel FT,Kissling WD,Beissmann H,Penn DJ

    更新日期:2012-09-01 00:00:00

  • Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes.

    abstract::Changes in peak photosynthesis timing (PPT) could substantially change the seasonality of the terrestrial carbon cycle. Spring PPT in dry regions has been documented for some individual plant species on a stand scale, but both the spatio-temporal pattern of shifting PPT on a continental scale and its determinants rema...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13224

    authors: Xu C,Liu H,Williams AP,Yin Y,Wu X

    更新日期:2016-08-01 00:00:00

  • The predictive skill of species distribution models for plankton in a changing climate.

    abstract::Statistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under future climate change scenarios. However, tests of their predictive skill in the real-world are rare. Here, we use data from the Continuous Plankton Recorder program, one of the longest running and ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13274

    authors: Brun P,Kiørboe T,Licandro P,Payne MR

    更新日期:2016-09-01 00:00:00

  • Risk of short-term biodiversity loss under more persistent precipitation regimes.

    abstract::Recent findings indicate that atmospheric warming increases the persistence of weather patterns in the mid-latitudes, resulting in sequences of longer dry and wet periods compared to historic averages. The alternation of progressively longer dry and wet extremes could increasingly select for species with a broad envir...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15501

    authors: Reynaert S,De Boeck HJ,Verbruggen E,Verlinden M,Flowers N,Nijs I

    更新日期:2020-12-23 00:00:00

  • Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks.

    abstract::Most tree roots on Earth form a symbiosis with either ecto- or arbuscular mycorrhizal fungi. Nitrogen fertilization is hypothesized to favor arbuscular mycorrhizal tree species at the expense of ectomycorrhizal species due to differences in fungal nitrogen acquisition strategies, and this may alter soil carbon balance...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14368

    authors: Averill C,Dietze MC,Bhatnagar JM

    更新日期:2018-10-01 00:00:00

  • Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types.

    abstract::The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dy...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13487

    authors: Acácio V,Dias FS,Catry FX,Rocha M,Moreira F

    更新日期:2017-03-01 00:00:00

  • Eight decades of sampling reveal a contemporary novel fish assemblage in coastal nursery habitats.

    abstract::In order to adequately monitor biodiversity trends through time and their responses to natural or anthropogenic impacts, researchers require long time series that are often unavailable. This general lack of datasets that are several decades or longer makes establishing a background or baseline of diversity metrics dif...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13047

    authors: Barceló C,Ciannelli L,Olsen EM,Johannessen T,Knutsen H

    更新日期:2016-03-01 00:00:00

  • The dynamics of architectural complexity on coral reefs under climate change.

    abstract::One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef-building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamic...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12698

    authors: Bozec YM,Alvarez-Filip L,Mumby PJ

    更新日期:2015-01-01 00:00:00