Testing for changes in biomass dynamics in large-scale forest datasets.

Abstract:

:Tropical forest responses to climate and atmospheric change are critical to the future of the global carbon budget. Recent studies have reported increases in estimated above-ground biomass (EAGB) stocks, productivity, and mortality in old-growth tropical forests. These increases could reflect a shift in forest functioning due to global change and/or long-lasting recovery from past disturbance. We introduce a novel approach to disentangle the relative contributions of these mechanisms by decomposing changes in whole-plot biomass fluxes into contributions from changes in the distribution of gap-successional stages and changes in fluxes for a given stage. Using 30 years of forest dynamic data at Barro Colorado Island, Panama, we investigated temporal variation in EAGB fluxes as a function of initial EAGB (EAGBi ) in 10 × 10 m quadrats. Productivity and mortality fluxes both increased strongly with initial quadrat EAGB. The distribution of EAGB (and thus EAGBi ) across quadrats hardly varied over 30 years (and seven censuses). EAGB fluxes as a function of EAGBi varied largely and significantly among census intervals, with notably higher productivity in 1985-1990 associated with recovery from the 1982-1983 El Niño event. Variation in whole-plot fluxes among census intervals was explained overwhelmingly by variation in fluxes as a function of EAGBi , with essentially no contribution from changes in EAGBi distributions. The high observed temporal variation in productivity and mortality suggests that this forest is very sensitive to climate variability. There was no consistent long-term trend in productivity, mortality, or biomass in this forest over 30 years, although the temporal variability in productivity and mortality was so strong that it could well mask a substantial trend. Accurate prediction of future tropical forest carbon budgets will require accounting for disturbance-recovery dynamics and understanding temporal variability in productivity and mortality.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Rutishauser E,Wright SJ,Condit R,Hubbell SP,Davies SJ,Muller-Landau HC

doi

10.1111/gcb.14833

subject

Has Abstract

pub_date

2020-03-01 00:00:00

pages

1485-1498

issue

3

eissn

1354-1013

issn

1365-2486

journal_volume

26

pub_type

杂志文章
  • Greening of the earth does not compensate for rising soil heterotrophic respiration under climate change.

    abstract::Stability of the soil carbon (C) pool under decadal scale variability in temperature and precipitation is an important source of uncertainty in our understanding of land-atmosphere climate feedbacks. This depends on how two opposing C-fluxes-influx from net primary production (NPP) and efflux from heterotrophic soil r...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15531

    authors: Naidu DG,Bagchi S

    更新日期:2021-01-28 00:00:00

  • Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests.

    abstract::Secondary forests (SFs) regenerating on previously deforested land account for large, expanding areas of tropical forest cover. Given that tropical forests rank among Earth's most important reservoirs of carbon and biodiversity, SFs play an increasingly pivotal role in the carbon cycle and as potential habitat for for...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14443

    authors: Lennox GD,Gardner TA,Thomson JR,Ferreira J,Berenguer E,Lees AC,Mac Nally R,Aragão LEOC,Ferraz SFB,Louzada J,Moura NG,Oliveira VHF,Pardini R,Solar RRC,Vaz-de Mello FZ,Vieira ICG,Barlow J

    更新日期:2018-12-01 00:00:00

  • Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species.

    abstract::Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range-wide, spatially...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12510

    authors: Pomara LY,LeDee OE,Martin KJ,Zuckerberg B

    更新日期:2014-07-01 00:00:00

  • Annual plants change in size over a century of observations.

    abstract::Studies have documented changes in animal body sizes over the last century, but very little is known about changes in plant sizes, even though reduced plant productivity is potentially responsible for declines in size of other organisms. Here, I ask whether warming trends in the Great Basin have affected plant size by...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12208

    authors: Leger EA

    更新日期:2013-07-01 00:00:00

  • Decomposition nitrogen is better retained than simulated deposition from mineral amendments in a temperate forest.

    abstract::Nitrogen (N) deposition (NDEP ) drives forest carbon (C) sequestration but the size of this effect is still uncertain. In the field, an estimate of these effects can be obtained by applying mineral N fertilizers over the soil or forest canopy. A 15 N label in the fertilizer can be then used to trace the movement of th...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13450

    authors: Nair RK,Perks MP,Mencuccini M

    更新日期:2017-04-01 00:00:00

  • Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs.

    abstract::Anthropogenic activities such as land-use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13882

    authors: Ruppert JLW,Vigliola L,Kulbicki M,Labrosse P,Fortin MJ,Meekan MG

    更新日期:2018-01-01 00:00:00

  • Effects of climate warming on carbon fluxes in grasslands- A global meta-analysis.

    abstract::Climate warming will affect terrestrial ecosystems in many ways, and warming-induced changes in terrestrial carbon (C) cycling could accelerate or slow future warming. So far, warming experiments have shown a wide range of C flux responses, across and within biome types. However, past meta-analyses of C flux responses...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14603

    authors: Wang N,Quesada B,Xia L,Butterbach-Bahl K,Goodale CL,Kiese R

    更新日期:2019-05-01 00:00:00

  • Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China.

    abstract::Controlled experiments have shown that global changes decouple the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in shifting stoichiometry that lies at the core of ecosystem functioning. However, the response of soil stoichiometry to global changes in natural ecosystems with differen...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13939

    authors: Yu Z,Wang M,Huang Z,Lin TC,Vadeboncoeur MA,Searle EB,Chen HYH

    更新日期:2018-03-01 00:00:00

  • Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation.

    abstract::Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota-large diatoms, dinoflagellates and copepods-that traditionally fuel higher tropic levels such as fish, s...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15161

    authors: Schmidt K,Birchill AJ,Atkinson A,Brewin RJW,Clark JR,Hickman AE,Johns DG,Lohan MC,Milne A,Pardo S,Polimene L,Smyth TJ,Tarran GA,Widdicombe CE,Woodward EMS,Ussher SJ

    更新日期:2020-10-01 00:00:00

  • "Got rats?" Global environmental costs of thirst for milk include acute biodiversity impacts linked to dairy feed production.

    abstract::Rodents damaging alfalfa crops typically destined for export to booming Eastern markets often cause economical losses to farmers, but management interventions attempting to control rodents (i.e., use of rodenticides) are themselves damaging to biodiversity. These damages resonate beyond dairy feed producing regions th...

    journal_title:Global change biology

    pub_type: 信件

    doi:10.1111/gcb.14170

    authors: Luque-Larena JJ,Mougeot F,Arroyo B,Lambin X

    更新日期:2018-07-01 00:00:00

  • Broken bridges: The isolation of Kilimanjaro's ecosystem.

    abstract::Biodiversity studies of global change mainly focus on direct impacts such as losses in species numbers or ecosystem functions. In this study, we focus on the long-term effects of recent land-cover conversion and subsequent ecological isolation of Kilimanjaro on biodiversity in a paleobiogeographical context, linking o...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14078

    authors: Hemp A,Hemp C

    更新日期:2018-08-01 00:00:00

  • Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.

    abstract::Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, month...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13418

    authors: Rousk K,Michelsen A

    更新日期:2017-04-01 00:00:00

  • Precipitation-drainage cycles lead to hot moments in soil carbon dioxide dynamics in a Neotropical wet forest.

    abstract::Soil CO2 concentrations and emissions from tropical forests are modulated seasonally by precipitation. However, subseasonal responses to meteorological events (e.g., storms, drought) are less well known. Here, we present the effects of meteorological variability on short-term (hours to months) dynamics of soil CO2 con...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15194

    authors: Fernandez-Bou AS,Dierick D,Allen MF,Harmon TC

    更新日期:2020-09-01 00:00:00

  • Climate and plant controls on soil organic matter in coastal wetlands.

    abstract::Coastal wetlands are among the most productive and carbon-rich ecosystems on Earth. Long-term carbon storage in coastal wetlands occurs primarily belowground as soil organic matter (SOM). In addition to serving as a carbon sink, SOM influences wetland ecosystem structure, function, and stability. To anticipate and mit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14376

    authors: Osland MJ,Gabler CA,Grace JB,Day RH,McCoy ML,McLeod JL,From AS,Enwright NM,Feher LC,Stagg CL,Hartley SB

    更新日期:2018-11-01 00:00:00

  • Interactive climate factors restrict future increases in spring productivity of temperate and boreal trees.

    abstract::Climate warming is currently advancing spring leaf-out of temperate and boreal trees, enhancing net primary productivity (NPP) of forests. However, it remains unclear whether this trend will continue, preventing for accurate projections of ecosystem functioning and climate feedbacks. Several ecophysiological mechanism...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15098

    authors: Zohner CM,Mo L,Pugh TAM,Bastin JF,Crowther TW

    更新日期:2020-07-01 00:00:00

  • A substantial role of soil erosion in the land carbon sink and its future changes.

    abstract::Realistic representation of land carbon sink in climate models is vital for predicting carbon climate feedbacks in a changing world. Although soil erosion that removes land organic carbon has increased substantially since the onset of agriculture, it is rarely included in the current generation of climate models. Usin...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14982

    authors: Tan Z,Leung LR,Li HY,Tesfa T,Zhu Q,Huang M

    更新日期:2020-01-08 00:00:00

  • Chronic ozone exacerbates the reduction in photosynthesis and acceleration of senescence caused by limited N availability in Nicotiana sylvestris.

    abstract::Both elevated ozone (O(3)) and limiting soil nitrogen (N) availability negatively affect crop performance. However, less is known about how the combination of elevated O(3) and limiting N affect crop growth and metabolism. In this study, we grew tobacco (Nicotiana sylvestris) in ambient and elevated O(3) at two N leve...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12237

    authors: Yendrek CR,Leisner CP,Ainsworth EA

    更新日期:2013-10-01 00:00:00

  • The influence of historical climate changes on Southern Ocean marine predator populations: a comparative analysis.

    abstract::The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher-order predators. Here, we compare the long-term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundanc...

    journal_title:Global change biology

    pub_type: 历史文章,杂志文章,评审

    doi:10.1111/gcb.13104

    authors: Younger JL,Emmerson LM,Miller KJ

    更新日期:2016-02-01 00:00:00

  • Projecting demographic responses to climate change: adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population.

    abstract::Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long-term mark-recapture data set, we examined the influence of multiple direc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12228

    authors: Dybala KE,Eadie JM,Gardali T,Seavy NE,Herzog MP

    更新日期:2013-09-01 00:00:00

  • Feasting on terrestrial organic matter: Dining in a dark lake changes microbial decomposition.

    abstract::Boreal lakes are major components of the global carbon cycle, partly because of sediment-bound heterotrophic microorganisms that decompose within-lake and terrestrially derived organic matter (t-OM). The ability for sediment bacteria to break down and alter t-OM may depend on environmental characteristics and communit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14391

    authors: Fitch A,Orland C,Willer D,Emilson EJS,Tanentzap AJ

    更新日期:2018-11-01 00:00:00

  • Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes.

    abstract::The advent of genomic-, transcriptomic- and proteomic-based approaches has revolutionized our ability to describe marine microbial communities, including biogeography, metabolic potential and diversity, mechanisms of adaptation, and phylogeny and evolutionary history. New interdisciplinary approaches are needed to mov...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12983

    authors: Mock T,Daines SJ,Geider R,Collins S,Metodiev M,Millar AJ,Moulton V,Lenton TM

    更新日期:2016-01-01 00:00:00

  • Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance.

    abstract::Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15283

    authors: Olid C,Klaminder J,Monteux S,Johansson M,Dorrepaal E

    更新日期:2020-10-01 00:00:00

  • Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs.

    abstract::Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13875

    authors: Arimitsu ML,Hobson KA,Webber DN,Piatt JF,Hood EW,Fellman JB

    更新日期:2018-01-01 00:00:00

  • How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?

    abstract::Feeding 9-10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to d...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12160

    authors: Smith P,Haberl H,Popp A,Erb KH,Lauk C,Harper R,Tubiello FN,de Siqueira Pinto A,Jafari M,Sohi S,Masera O,Böttcher H,Berndes G,Bustamante M,Ahammad H,Clark H,Dong H,Elsiddig EA,Mbow C,Ravindranath NH,Rice CW,Roble

    更新日期:2013-08-01 00:00:00

  • Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes.

    abstract::The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological resp...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15273

    authors: Beas-Luna R,Micheli F,Woodson CB,Carr M,Malone D,Torre J,Boch C,Caselle JE,Edwards M,Freiwald J,Hamilton SL,Hernandez A,Konar B,Kroeker KJ,Lorda J,Montaño-Moctezuma G,Torres-Moye G

    更新日期:2020-09-09 00:00:00

  • The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States.

    abstract::Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interacti...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13816

    authors: Lu X,Zhou Y,Liu Y,Le Page Y

    更新日期:2018-02-01 00:00:00

  • Life history consequences of developing in anthropogenic noise.

    abstract::When environments change rapidly, adaptive phenotypic plasticity can ameliorate negative effects of environmental change on survival and reproduction. Recent evidence suggests, however, that plastic responses to human-induced environmental change are often maladaptive or insufficient to overcome novel selection pressu...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14610

    authors: Gurule-Small GA,Tinghitella RM

    更新日期:2019-06-01 00:00:00

  • Land-use conversion and changing soil carbon stocks in China's 'Grain-for-Green' Program: a synthesis.

    abstract::The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cro...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12508

    authors: Deng L,Liu GB,Shangguan ZP

    更新日期:2014-11-01 00:00:00

  • Risk of genetic maladaptation due to climate change in three major European tree species.

    abstract::Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnera...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13802

    authors: Frank A,Howe GT,Sperisen C,Brang P,Clair JBS,Schmatz DR,Heiri C

    更新日期:2017-12-01 00:00:00

  • Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity.

    abstract::Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO2 accumulation are emerging, however, the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primar...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14324

    authors: Richier S,Achterberg EP,Humphreys MP,Poulton AJ,Suggett DJ,Tyrrell T,Moore CM

    更新日期:2018-09-01 00:00:00