A substantial role of soil erosion in the land carbon sink and its future changes.

Abstract:

:Realistic representation of land carbon sink in climate models is vital for predicting carbon climate feedbacks in a changing world. Although soil erosion that removes land organic carbon has increased substantially since the onset of agriculture, it is rarely included in the current generation of climate models. Using an Earth system model (ESM) with soil erosion represented, we estimated that on average soil erosion displaces 5% of newly fixed land organic carbon downslope annually in the continental United States. In the lower Mississippi river basin and the Cascades, the fraction can be as large as 40%. About 12% of the eroded organic carbon is eventually exported to inland waters, which is equal to 14% of the simulated net carbon gain by terrestrial ecosystems. By comparing the eroded organic carbon export to rivers with the particulate organic carbon export to oceans, we demonstrated that a large fraction of the carbon export to rivers could have been mineralized in inland waters. Importantly, with a direct comparison of eroded and exported soil organic carbon and land net carbon uptake, we found that ESMs that ignore soil erosion likely offset the erosional carbon loss by increasing heterotrophic respiration implicitly. But as soil erosion and heterotrophic respiration respond differently to a warming climate, this unrealistic compensation would lead to biased predictions of future land carbon sink.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Tan Z,Leung LR,Li HY,Tesfa T,Zhu Q,Huang M

doi

10.1111/gcb.14982

subject

Has Abstract

pub_date

2020-01-08 00:00:00

eissn

1354-1013

issn

1365-2486

pub_type

杂志文章
  • Mortality events resulting from Australia's catastrophic fires threaten aquatic biota.

    abstract::The consequences of the 2019-2020 bushfires in Australia were also devastating for the aquatic biota. Following abnormal rainfall events in burnt areas, widespread mortality events including fish and invertebrates were recorded in estuarine and freshwater systems. Such negative impacts on aquatic resources highlight t...

    journal_title:Global change biology

    pub_type: 信件

    doi:10.1111/gcb.15282

    authors: Silva LGM,Doyle KE,Duffy D,Humphries P,Horta A,Baumgartner LJ

    更新日期:2020-10-01 00:00:00

  • Matrix approach to land carbon cycle modeling: A case study with the Community Land Model.

    abstract::The terrestrial carbon (C) cycle has been commonly represented by a series of C balance equations to track C influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C cycle processes well but makes it difficult to track model behaviors. It is a...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13948

    authors: Huang Y,Lu X,Shi Z,Lawrence D,Koven CD,Xia J,Du Z,Kluzek E,Luo Y

    更新日期:2018-03-01 00:00:00

  • Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus).

    abstract::The European spruce bark beetle Ips typographus is the most important insect pest in Central European forests. Under climate change, its phenology is presumed to be changing and mass infestations becoming more likely. While several studies have investigated climate effects across a latitudinal gradient, it remains an ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14766

    authors: Jakoby O,Lischke H,Wermelinger B

    更新日期:2019-12-01 00:00:00

  • A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning.

    abstract::Diagnostic carbon cycle models produce estimates of net ecosystem production (NEP, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite-based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covar...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12313

    authors: Turner DP,Jacobson AR,Ritts WD,Wang WL,Nemani R

    更新日期:2013-11-01 00:00:00

  • Land management: data availability and process understanding for global change studies.

    abstract::In the light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced c...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.13443

    authors: Erb KH,Luyssaert S,Meyfroidt P,Pongratz J,Don A,Kloster S,Kuemmerle T,Fetzel T,Fuchs R,Herold M,Haberl H,Jones CD,Marín-Spiotta E,McCallum I,Robertson E,Seufert V,Fritz S,Valade A,Wiltshire A,Dolman AJ

    更新日期:2017-02-01 00:00:00

  • Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.

    abstract::Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature-induced drought stress. However, variations in tree growth alone do not revea...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12893

    authors: Walker XJ,Mack MC,Johnstone JF

    更新日期:2015-08-01 00:00:00

  • Species' traits as predictors of range shifts under contemporary climate change: A review and meta-analysis.

    abstract::A growing body of literature seeks to explain variation in range shifts using species' ecological and life-history traits, with expectations that shifts should be greater in species with greater dispersal ability, reproductive potential, and ecological generalization. Despite strong theoretical support for species' tr...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析,评审

    doi:10.1111/gcb.13736

    authors: MacLean SA,Beissinger SR

    更新日期:2017-10-01 00:00:00

  • Dynamic habitat suitability modelling reveals rapid poleward distribution shift in a mobile apex predator.

    abstract::Many taxa are undergoing distribution shifts in response to anthropogenic climate change. However, detecting a climate signal in mobile species is difficult due to their wide-ranging, patchy distributions, often driven by natural climate variability. For example, difficulties associated with assessing pelagic fish dis...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13129

    authors: Hill NJ,Tobin AJ,Reside AE,Pepperell JG,Bridge TC

    更新日期:2016-03-01 00:00:00

  • Native and exotic plant cover vary inversely along a climate gradient 11 years following stand-replacing wildfire in a dry coniferous forest, Oregon, USA.

    abstract::Community re-assembly following future disturbances will often occur under warmer and more moisture-limited conditions than when current communities assembled. Because the establishment stage is regularly the most sensitive to climate and competition, the trajectory of recovery from disturbance in a changing environme...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12775

    authors: Dodson EK,Root HT

    更新日期:2015-02-01 00:00:00

  • "Got rats?" Global environmental costs of thirst for milk include acute biodiversity impacts linked to dairy feed production.

    abstract::Rodents damaging alfalfa crops typically destined for export to booming Eastern markets often cause economical losses to farmers, but management interventions attempting to control rodents (i.e., use of rodenticides) are themselves damaging to biodiversity. These damages resonate beyond dairy feed producing regions th...

    journal_title:Global change biology

    pub_type: 信件

    doi:10.1111/gcb.14170

    authors: Luque-Larena JJ,Mougeot F,Arroyo B,Lambin X

    更新日期:2018-07-01 00:00:00

  • Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings.

    abstract::Simultaneously with warming climate, other climatic and environmental factors are also changing. Here, we investigated for the first time the effects of elevated temperature, increased ultraviolet-B (UVB) radiation, fertilization and all combinations of these on the growth, secondary chemistry and needle structure of ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12464

    authors: Virjamo V,Sutinen S,Julkunen-Tiitto R

    更新日期:2014-07-01 00:00:00

  • Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing.

    abstract::One widely documented phenological response to climate change is the earlier occurrence of spring-breeding events. While such climate change-driven shifts in phenology are common, their consequences for individuals and populations have rarely been investigated. I addressed this gap in our knowledge by using a multi-ye...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12720

    authors: Benard MF

    更新日期:2015-03-01 00:00:00

  • The greenhouse gas balance of European grasslands.

    abstract::The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12998

    authors: Chang J,Ciais P,Viovy N,Vuichard N,Sultan B,Soussana JF

    更新日期:2015-10-01 00:00:00

  • From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach.

    abstract::Maps of continental-scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time-scales. User groups with an interest in past land cover include the clim...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12776

    authors: Fyfe RM,Woodbridge J,Roberts N

    更新日期:2015-03-01 00:00:00

  • Will coral reef sponges be winners in the Anthropocene?

    abstract::Recent observations have shown that increases in climate change-related coral mortality cause changes in shallow coral reef community structure through phase shifts to alternative taxa. As a result, sponges have emerged as a potential candidate taxon to become a "winner," and therefore a numerically and functionally d...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15039

    authors: Lesser MP,Slattery M

    更新日期:2020-06-01 00:00:00

  • Plant diversity loss reduces soil respiration across terrestrial ecosystems.

    abstract::The rapid global biodiversity loss has led to the decline in ecosystem function. Despite the critical importance of soil respiration (Rs) in the global carbon and nutrient cycles, how plant diversity loss affects Rs remains uncertain. Here we present a meta-analysis using 446 paired observations from 95 published stud...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14567

    authors: Chen X,Chen HYH

    更新日期:2019-01-06 00:00:00

  • Methane emission from global livestock sector during 1890-2014: Magnitude, trends and spatiotemporal patterns.

    abstract::Human demand for livestock products has increased rapidly during the past few decades largely due to dietary transition and population growth, with significant impact on climate and the environment. The contribution of ruminant livestock to greenhouse gas (GHG) emissions has been investigated extensively at various sc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13709

    authors: Dangal SRS,Tian H,Zhang B,Pan S,Lu C,Yang J

    更新日期:2017-10-01 00:00:00

  • Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere.

    abstract::The relationship between the timing of recurrent biological events and seasonal climatic patterns (i.e., phenology) is a crucial ecological process. Changes in phenology are increasingly linked to global climate change. However, current evidence of phenological responses to recent climate change is subjected to substa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14423

    authors: Diovisalvi N,Odriozola M,Garcia de Souza J,Rojas Molina F,Fontanarrosa MS,Escaray R,Bustingorry J,Sanzano P,Grosman F,Zagarese H

    更新日期:2018-11-01 00:00:00

  • Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance.

    abstract::Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15283

    authors: Olid C,Klaminder J,Monteux S,Johansson M,Dorrepaal E

    更新日期:2020-10-01 00:00:00

  • Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2.

    abstract::To realistically simulate climate feedbacks from the land surface to the atmosphere, models must replicate the responses of plants to environmental changes. Several processes, operating at various scales, cause the responses of photosynthesis and plant respiration to temperature and CO2 to change over time of exposure...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/j.1365-2486.2012.02797.x

    authors: Smith NG,Dukes JS

    更新日期:2013-01-01 00:00:00

  • Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains.

    abstract::In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Suc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13704

    authors: Tepley AJ,Thompson JR,Epstein HE,Anderson-Teixeira KJ

    更新日期:2017-10-01 00:00:00

  • Long-term enhanced winter soil frost alters growing season CO2 fluxes through its impact on vegetation development in a boreal peatland.

    abstract::At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO2 ) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13621

    authors: Zhao J,Peichl M,Nilsson MB

    更新日期:2017-08-01 00:00:00

  • Coralline algal skeletal mineralogy affects grazer impacts.

    abstract::In macroalgal-dominated systems, herbivory is a major driver in controlling ecosystem structure. However, the role of altered plant-herbivore interactions and effects of changes to trophic control under global change are poorly understood. This is because both macroalgae and grazers themselves may be affected by globa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14370

    authors: McCoy SJ,Kamenos NA

    更新日期:2018-10-01 00:00:00

  • El Niño Southern Oscillation influences the abundance and movements of a marine top predator in coastal waters.

    abstract::Large-scale climate modes such as El Niño Southern Oscillation (ENSO) influence population dynamics in many species, including marine top predators. However, few quantitative studies have investigated the influence of large-scale variability on resident marine top predator populations. We examined the effect of climat...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13892

    authors: Sprogis KR,Christiansen F,Wandres M,Bejder L

    更新日期:2018-03-01 00:00:00

  • Synergistic and antagonistic effects of land use and non-native species on community responses to climate change.

    abstract::Climate change, land-use change and introductions of non-native species are key determinants of biodiversity change worldwide. However, the extent to which anthropogenic drivers of environmental change interact to affect biological communities is largely unknown, especially over longer time periods. Here, we show that...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14765

    authors: Auffret AG,Thomas CD

    更新日期:2019-12-01 00:00:00

  • Relationships between individual-tree mortality and water-balance variables indicate positive trends in water stress-induced tree mortality across North America.

    abstract::Accounting for water stress-induced tree mortality in forest productivity models remains a challenge due to uncertainty in stress tolerance of tree populations. In this study, logistic regression models were developed to assess species-specific relationships between probability of mortality (Pm ) and drought, drawing ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13428

    authors: Hember RA,Kurz WA,Coops NC

    更新日期:2017-04-01 00:00:00

  • Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment.

    abstract::The effects of global environmental changes on soil nitrogen (N) pools and fluxes have consequences for ecosystem functions such as plant productivity and N retention. In a 13-year grassland experiment, we evaluated how elevated atmospheric carbon dioxide (CO2 ), N fertilization, and plant species richness alter soil ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12096

    authors: Mueller KE,Hobbie SE,Tilman D,Reich PB

    更新日期:2013-04-01 00:00:00

  • Climate and plant controls on soil organic matter in coastal wetlands.

    abstract::Coastal wetlands are among the most productive and carbon-rich ecosystems on Earth. Long-term carbon storage in coastal wetlands occurs primarily belowground as soil organic matter (SOM). In addition to serving as a carbon sink, SOM influences wetland ecosystem structure, function, and stability. To anticipate and mit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14376

    authors: Osland MJ,Gabler CA,Grace JB,Day RH,McCoy ML,McLeod JL,From AS,Enwright NM,Feher LC,Stagg CL,Hartley SB

    更新日期:2018-11-01 00:00:00

  • Climate change and fishing: a century of shifting distribution in North Sea cod.

    abstract::Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in gre...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12513

    authors: Engelhard GH,Righton DA,Pinnegar JK

    更新日期:2014-08-01 00:00:00

  • Urban ponds as an aquatic biodiversity resource in modified landscapes.

    abstract::Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic sys...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13401

    authors: Hill MJ,Biggs J,Thornhill I,Briers RA,Gledhill DG,White JC,Wood PJ,Hassall C

    更新日期:2017-03-01 00:00:00