Urban ponds as an aquatic biodiversity resource in modified landscapes.

Abstract:

:Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic systems. In this study, we examined aquatic macro-invertebrate diversity (family and species level) and variation in community composition between 240 urban and 782 nonurban ponds distributed across the United Kingdom. Contrary to predictions, urban ponds supported similar numbers of invertebrate species and families compared to nonurban ponds. Similar gamma diversity was found between the two groups at both family and species taxonomic levels. The biological communities of urban ponds were markedly different to those of nonurban ponds, and the variability in urban pond community composition was greater than that in nonurban ponds, contrary to previous work showing homogenization of communities in urban areas. Positive spatial autocorrelation was recorded for urban and nonurban ponds at 0-50 km (distance between pond study sites) and negative spatial autocorrelation was observed at 100-150 km and was stronger in urban ponds in both cases. Ponds do not follow the same ecological patterns as terrestrial and lotic habitats (reduced taxonomic richness) in urban environments; in contrast, they support high taxonomic richness and contribute significantly to regional faunal diversity. Individual cities are complex structural mosaics which evolve over long periods of time and are managed in diverse ways. This facilitates the development of a wide range of environmental conditions and habitat niches in urban ponds which can promote greater heterogeneity between pond communities at larger scales. Ponds provide an opportunity for managers and environmental regulators to conserve and enhance freshwater biodiversity in urbanized landscapes whilst also facilitating key ecosystem services including storm water storage and water treatment.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Hill MJ,Biggs J,Thornhill I,Briers RA,Gledhill DG,White JC,Wood PJ,Hassall C

doi

10.1111/gcb.13401

subject

Has Abstract

pub_date

2017-03-01 00:00:00

pages

986-999

issue

3

eissn

1354-1013

issn

1365-2486

journal_volume

23

pub_type

杂志文章
  • Decrease in water clarity of the southern and central North Sea during the 20th century.

    abstract::Light in the marine environment is a key environmental variable coupling physics to marine biogeochemistry and ecology. Weak light penetration reduces light available for photosynthesis, changing energy fluxes through the marine food web. Based on published and unpublished data, this study shows that the central and s...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12854

    authors: Capuzzo E,Stephens D,Silva T,Barry J,Forster RM

    更新日期:2015-06-01 00:00:00

  • Global environmental changes impact soil hydraulic functions through biophysical feedbacks.

    abstract::Although only representing 0.05% of global freshwater, or 0.001% of all global water, soil water supports all terrestrial biological life. Soil moisture behaviour in most models is constrained by hydraulic parameters that do not change. Here we argue that biological feedbacks from plants, macro-fauna and the microbiom...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14626

    authors: Robinson DA,Hopmans JW,Filipovic V,van der Ploeg M,Lebron I,Jones SB,Reinsch S,Jarvis N,Tuller M

    更新日期:2019-06-01 00:00:00

  • Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada.

    abstract::Insects, diseases, fire and drought and other disturbances associated with global climate change contribute to forest decline and mortality in many parts of the world. Forest decline and mortality related to drought or insect outbreaks have been observed in North American aspen forests. However, little research has be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13855

    authors: Chen L,Huang JG,Dawson A,Zhai L,Stadt KJ,Comeau PG,Whitehouse C

    更新日期:2018-02-01 00:00:00

  • Climate warming restructures an aquatic food web over 28 years.

    abstract::Climate warming can restructure lake food webs if trophic levels differ in their thermal responses, but evidence for these changes and their underlying mechanisms remain scarce in nature. Here we document how warming lake temperatures by up to 2°C, rather than changes in trophic state or fishing effort, have restructu...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15347

    authors: Tanentzap AJ,Morabito G,Volta P,Rogora M,Yan ND,Manca M

    更新日期:2020-12-01 00:00:00

  • Carbon dynamics, net primary productivity and human-appropriated net primary productivity across a forest-cocoa farm landscape in West Africa.

    abstract::Terrestrial net primary productivity (NPP) is an important metric of ecosystem functioning; however, there are little empirical data on the NPP of human-modified ecosystems, particularly smallholder, perennial crops like cocoa (Theobroma cacao), which are extensive across the tropics. Human-appropriated NPP (HANPP) is...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14661

    authors: Morel AC,Adu Sasu M,Adu-Bredu S,Quaye M,Moore C,Ashley Asare R,Mason J,Hirons M,McDermott CL,Robinson EJZ,Boyd E,Norris K,Malhi Y

    更新日期:2019-08-01 00:00:00

  • Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests.

    abstract::The terrestrial forest ecosystems in the northern high latitude region have been experiencing significant warming rates over several decades. These forests are considered crucial to the climate system and global carbon cycle and are particularly vulnerable to climate change. To obtain an improved estimate of the respo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14135

    authors: Tei S,Sugimoto A

    更新日期:2018-09-01 00:00:00

  • Global wheat production with 1.5 and 2.0°C above pre-industrial warming.

    abstract::Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extre...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14542

    authors: Liu B,Martre P,Ewert F,Porter JR,Challinor AJ,Müller C,Ruane AC,Waha K,Thorburn PJ,Aggarwal PK,Ahmed M,Balkovič J,Basso B,Biernath C,Bindi M,Cammarano D,De Sanctis G,Dumont B,Espadafor M,Eyshi Rezaei E,Ferrise R,

    更新日期:2018-12-07 00:00:00

  • Divergent long-term trends and interannual variation in ecosystem resource use efficiencies of a southern boreal old black spruce forest 1999-2017.

    abstract::Long-term trends in ecosystem resource use efficiencies (RUEs) and their controlling factors are key pieces of information for understanding how an ecosystem responds to climate change. We used continuous eddy covariance and microclimate data over the period 1999-2017 from a 120-year-old black spruce stand in central ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14674

    authors: Liu P,Black TA,Jassal RS,Zha T,Nesic Z,Barr AG,Helgason WD,Jia X,Tian Y,Stephens JJ,Ma J

    更新日期:2019-09-01 00:00:00

  • Responses of belowground communities to large aboveground herbivores: Meta-analysis reveals biome-dependent patterns and critical research gaps.

    abstract::The importance of herbivore-plant and soil biota-plant interactions in terrestrial ecosystems is amply recognized, but the effects of aboveground herbivores on soil biota remain challenging to predict. To find global patterns in belowground responses to vertebrate herbivores, we performed a meta-analysis of studies th...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.13675

    authors: Andriuzzi WS,Wall DH

    更新日期:2017-09-01 00:00:00

  • Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions.

    abstract::Biological invasions are one of the biggest threats to global biodiversity. Marine artificial structures are proliferating worldwide and provide a haven for marine invasive species. Such structures disrupt local hydrodynamics, which can lead to the formation of oxygen-depleted microsites. The extent to which native fa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13668

    authors: Lagos ME,Barneche DR,White CR,Marshall DJ

    更新日期:2017-06-01 00:00:00

  • A coral reef refuge in the Red Sea.

    abstract::The stability and persistence of coral reefs in the decades to come is uncertain due to global warming and repeated bleaching events that will lead to reduced resilience of these ecological and socio-economically important ecosystems. Identifying key refugia is potentially important for future conservation actions. We...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12356

    authors: Fine M,Gildor H,Genin A

    更新日期:2013-12-01 00:00:00

  • Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms.

    abstract::Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13652

    authors: Lefevre S,McKenzie DJ,Nilsson GE

    更新日期:2017-09-01 00:00:00

  • Feasting on terrestrial organic matter: Dining in a dark lake changes microbial decomposition.

    abstract::Boreal lakes are major components of the global carbon cycle, partly because of sediment-bound heterotrophic microorganisms that decompose within-lake and terrestrially derived organic matter (t-OM). The ability for sediment bacteria to break down and alter t-OM may depend on environmental characteristics and communit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14391

    authors: Fitch A,Orland C,Willer D,Emilson EJS,Tanentzap AJ

    更新日期:2018-11-01 00:00:00

  • Climatic changes can drive the loss of genetic diversity in a Neotropical savanna tree species.

    abstract::The high rates of future climatic changes, compared with the rates reported for past changes, may hamper species adaptation to new climates or the tracking of suitable conditions, resulting in significant loss of genetic diversity. Trees are dominant species in many biomes and because they are long-lived, they may not...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13685

    authors: Lima JS,Ballesteros-Mejia L,Lima-Ribeiro MS,Collevatti RG

    更新日期:2017-11-01 00:00:00

  • Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems.

    abstract::Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters infl...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.13059

    authors: Cloern JE,Abreu PC,Carstensen J,Chauvaud L,Elmgren R,Grall J,Greening H,Johansson JO,Kahru M,Sherwood ET,Xu J,Yin K

    更新日期:2016-02-01 00:00:00

  • 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation?

    abstract::Free-air CO2 enrichment (FACE) allows open-air elevation of [CO2 ] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta-analysis. Subsequent studies have combine...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.15375

    authors: Ainsworth EA,Long SP

    更新日期:2021-01-01 00:00:00

  • Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests.

    abstract::Secondary forests (SFs) regenerating on previously deforested land account for large, expanding areas of tropical forest cover. Given that tropical forests rank among Earth's most important reservoirs of carbon and biodiversity, SFs play an increasingly pivotal role in the carbon cycle and as potential habitat for for...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14443

    authors: Lennox GD,Gardner TA,Thomson JR,Ferreira J,Berenguer E,Lees AC,Mac Nally R,Aragão LEOC,Ferraz SFB,Louzada J,Moura NG,Oliveira VHF,Pardini R,Solar RRC,Vaz-de Mello FZ,Vieira ICG,Barlow J

    更新日期:2018-12-01 00:00:00

  • Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments.

    abstract::Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless, in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg(-1) ) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic communi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12109

    authors: Thomsen J,Casties I,Pansch C,Körtzinger A,Melzner F

    更新日期:2013-04-01 00:00:00

  • El Niño Southern Oscillation influences the abundance and movements of a marine top predator in coastal waters.

    abstract::Large-scale climate modes such as El Niño Southern Oscillation (ENSO) influence population dynamics in many species, including marine top predators. However, few quantitative studies have investigated the influence of large-scale variability on resident marine top predator populations. We examined the effect of climat...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13892

    authors: Sprogis KR,Christiansen F,Wandres M,Bejder L

    更新日期:2018-03-01 00:00:00

  • Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs.

    abstract::Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13875

    authors: Arimitsu ML,Hobson KA,Webber DN,Piatt JF,Hood EW,Fellman JB

    更新日期:2018-01-01 00:00:00

  • Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages.

    abstract::White light-emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13615

    authors: Davies TW,Bennie J,Cruse D,Blumgart D,Inger R,Gaston KJ

    更新日期:2017-07-01 00:00:00

  • Amphibian breeding phenology trends under climate change: predicting the past to forecast the future.

    abstract::Global climate warming is predicted to hasten the onset of spring breeding by anuran amphibians in seasonal environments. Previous data had indicated that the breeding phenology of a population of Fowler's Toads (Anaxyrus fowleri) at their northern range limit had been progressively later in spring, contrary to genera...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13390

    authors: Green DM

    更新日期:2017-02-01 00:00:00

  • Anthropogenic nitrogen enrichment enhances soil carbon accumulation by impacting saprotrophs rather than ectomycorrhizal fungal activity.

    abstract::There is evidence that anthropogenic nitrogen (N) deposition enhances carbon (C) sequestration in boreal forest soils. However, it is unclear how free-living saprotrophs (bacteria and fungi, SAP) and ectomycorrhizal (EM) fungi responses to N addition impact soil C dynamics. Our aim was to investigate how SAP and EM co...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14722

    authors: Maaroufi NI,Nordin A,Palmqvist K,Hasselquist NJ,Forsmark B,Rosenstock NP,Wallander H,Gundale MJ

    更新日期:2019-09-01 00:00:00

  • Elevated atmospheric [CO2 ] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves.

    abstract::Wheat production will be impacted by increasing concentration of atmospheric CO2 [CO2 ], which is expected to rise from about 400 μmol mol(-1) in 2015 to 550 μmol mol(-1) by 2050. Changes to plant physiology and crop responses from elevated [CO2 ] (e[CO2 ]) are well documented for some environments, but field-level re...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13263

    authors: Fitzgerald GJ,Tausz M,O'Leary G,Mollah MR,Tausz-Posch S,Seneweera S,Mock I,Löw M,Partington DL,McNeil D,Norton RM

    更新日期:2016-06-01 00:00:00

  • Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes.

    abstract::Changes in peak photosynthesis timing (PPT) could substantially change the seasonality of the terrestrial carbon cycle. Spring PPT in dry regions has been documented for some individual plant species on a stand scale, but both the spatio-temporal pattern of shifting PPT on a continental scale and its determinants rema...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13224

    authors: Xu C,Liu H,Williams AP,Yin Y,Wu X

    更新日期:2016-08-01 00:00:00

  • Lessons from two high CO2 worlds - future oceans and intensive aquaculture.

    abstract::Exponentially rising CO2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO2 directly affects acid-base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13515

    authors: Ellis RP,Urbina MA,Wilson RW

    更新日期:2017-06-01 00:00:00

  • Modeling optimal responses and fitness consequences in a changing Arctic.

    abstract::Animals must balance a series of costs and benefits while trying to maximize their fitness. For example, an individual may need to choose how much energy to allocate to reproduction versus growth, or how much time to spend on vigilance versus foraging. Their decisions depend on complex interactions between environment...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14681

    authors: Reimer JR,Mangel M,Derocher AE,Lewis MA

    更新日期:2019-10-01 00:00:00

  • Losing ground: past history and future fate of Arctic small mammals in a changing climate.

    abstract::According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate wa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12157

    authors: Prost S,Guralnick RP,Waltari E,Fedorov VB,Kuzmina E,Smirnov N,van Kolfschoten T,Hofreiter M,Vrieling K

    更新日期:2013-06-01 00:00:00

  • Labile carbon retention compensates for CO2 released by priming in forest soils.

    abstract::Increase of belowground C allocation by plants under global warming or elevated CO2 may promote decomposition of soil organic carbon (SOC) by priming and strongly affects SOC dynamics. The specific effects by priming of SOC depend on the amount and frequency of C inputs. Most previous priming studies have investigated...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12458

    authors: Qiao N,Schaefer D,Blagodatskaya E,Zou X,Xu X,Kuzyakov Y

    更新日期:2014-06-01 00:00:00

  • The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    abstract::Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitati...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13248

    authors: Fisher JP,Estop-Aragonés C,Thierry A,Charman DJ,Wolfe SA,Hartley IP,Murton JB,Williams M,Phoenix GK

    更新日期:2016-09-01 00:00:00