Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing.

Abstract:

:One widely documented phenological response to climate change is the earlier occurrence of spring-breeding events. While such climate change-driven shifts in phenology are common, their consequences for individuals and populations have rarely been investigated. I addressed this gap in our knowledge by using a multi-year observational study of six wood frog (Rana sylvatica) populations near the southern edge of their range. I tested first if winter temperature or precipitation affected the date of breeding and female fecundity, and second if timing of breeding affected subsequent larval development rate, mass at metamorphosis, date of metamorphosis, and survival. Warmer winters were associated with earlier breeding but reduced female fecundity. Winter precipitation did not affect breeding date, but was positively associated with female fecundity. There was no association between earlier breeding and larval survival or mass at metamorphosis, but earlier breeding was associated with delayed larval development. The delay in larval development was explained through a counterintuitive correlation between breeding date and temperature during larval development. Warmer winters led to earlier breeding, which in turn was associated with cooler post-breeding temperatures that slowed larval development. The delay in larval development did not fully compensate for the earlier breeding, such that for every 2 days earlier that breeding took place, the average date of metamorphosis was 1 day earlier. Other studies have found that earlier metamorphosis is associated with increased postmetamorphic growth and survival, suggesting that earlier breeding has beneficial effects on wood frog populations.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Benard MF

doi

10.1111/gcb.12720

subject

Has Abstract

pub_date

2015-03-01 00:00:00

pages

1058-65

issue

3

eissn

1354-1013

issn

1365-2486

journal_volume

21

pub_type

杂志文章
  • Methane emission from global livestock sector during 1890-2014: Magnitude, trends and spatiotemporal patterns.

    abstract::Human demand for livestock products has increased rapidly during the past few decades largely due to dietary transition and population growth, with significant impact on climate and the environment. The contribution of ruminant livestock to greenhouse gas (GHG) emissions has been investigated extensively at various sc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13709

    authors: Dangal SRS,Tian H,Zhang B,Pan S,Lu C,Yang J

    更新日期:2017-10-01 00:00:00

  • Adapting management to a changing world: Warm temperatures, dry soil, and interannual variability limit restoration success of a dominant woody shrub in temperate drylands.

    abstract::Restoration and rehabilitation of native vegetation in dryland ecosystems, which encompass over 40% of terrestrial ecosystems, is a common challenge that continues to grow as wildfire and biological invasions transform dryland plant communities. The difficulty in part stems from low and variable precipitation, combine...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14374

    authors: Shriver RK,Andrews CM,Pilliod DS,Arkle RS,Welty JL,Germino MJ,Duniway MC,Pyke DA,Bradford JB

    更新日期:2018-10-01 00:00:00

  • Changing spring snow cover dynamics and early season forage availability affect the behavior of a large carnivore.

    abstract::Changing climates are altering wildlife habitats and wildlife behavior in complex ways. Here, we examine how changing spring snow cover dynamics and early season forage availability are altering grizzly bear (Ursus arctos) behavior postden emergence. Telemetry data were used to identify spring activity dates for 48 in...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15295

    authors: Rickbeil GJM,Coops NC,Berman EE,McClelland CJR,Bolton DK,Stenhouse GB

    更新日期:2020-07-28 00:00:00

  • Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes.

    abstract::The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological resp...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15273

    authors: Beas-Luna R,Micheli F,Woodson CB,Carr M,Malone D,Torre J,Boch C,Caselle JE,Edwards M,Freiwald J,Hamilton SL,Hernandez A,Konar B,Kroeker KJ,Lorda J,Montaño-Moctezuma G,Torres-Moye G

    更新日期:2020-09-09 00:00:00

  • Modeling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology.

    abstract::Understanding the drivers of phenological events is vital for forecasting species' responses to climate change. We developed flexible Bayesian survival regression models to assess a 29-year, individual-level time series of flowering phenology from four taxa of Japanese cherry trees (Prunus spachiana, Prunus × yedoensi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12364

    authors: Allen JM,Terres MA,Katsuki T,Iwamoto K,Kobori H,Higuchi H,Primack RB,Wilson AM,Gelfand A,Silander JA Jr

    更新日期:2014-04-01 00:00:00

  • Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China.

    abstract::Autumn phenology plays a critical role in regulating climate-biosphere interactions. However, the climatic drivers of autumn phenology remain unclear. In this study, we applied four methods to estimate the date of the end of the growing season (EOS) across China's temperate biomes based on a 30-year normalized differe...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13081

    authors: Liu Q,Fu YH,Zeng Z,Huang M,Li X,Piao S

    更新日期:2016-02-01 00:00:00

  • Advancing frost dates have reduced frost risk among most North American angiosperms since 1980.

    abstract::In recent decades, the final frost dates of winter have advanced throughout North America, and many angiosperm taxa have simultaneously advanced their flowering times as the climate has warmed. Phenological advancement may reduce plant fitness, as flowering prior to the final frost date of the winter/spring transition...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15380

    authors: Park IW,Ramirez-Parada T,Mazer SJ

    更新日期:2021-01-01 00:00:00

  • Methane emission from feather moss stands.

    abstract::Data from remote sensing and Eddy towers indicate that forests are not always net sinks for atmospheric CH4 . However, studies describing specific sources within forests and functional analysis of microorganisms on sites with CH4 turnover are scarce. Feather moss stands were considered to be net sinks for carbon dioxi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13764

    authors: Kanaparthi D,Reim A,Martinson GO,Pommerenke B,Conrad R

    更新日期:2017-11-01 00:00:00

  • Acidification effects on biofouling communities: winners and losers.

    abstract::How ocean acidification affects marine life is a major concern for science and society. However, its impacts on encrusting biofouling communities, that are both the initial colonizers of hard substrata and of great economic importance, are almost unknown. We showed that community composition changed significantly, fro...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12841

    authors: Peck LS,Clark MS,Power D,Reis J,Batista FM,Harper EM

    更新日期:2015-05-01 00:00:00

  • Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings.

    abstract::Simultaneously with warming climate, other climatic and environmental factors are also changing. Here, we investigated for the first time the effects of elevated temperature, increased ultraviolet-B (UVB) radiation, fertilization and all combinations of these on the growth, secondary chemistry and needle structure of ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12464

    authors: Virjamo V,Sutinen S,Julkunen-Tiitto R

    更新日期:2014-07-01 00:00:00

  • Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities.

    abstract::Many arctic ecological processes are regulated by soil temperature that is tightly interconnected with snow cover distribution and persistence. Recently, various climate-induced changes have been observed in arctic tundra ecosystems, e.g. shrub expansion, resulting in reduction in albedo and greater C fixation in abov...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13294

    authors: Morgado LN,Semenova TA,Welker JM,Walker MD,Smets E,Geml J

    更新日期:2016-09-01 00:00:00

  • Quantifying variety-specific heat resistance and the potential for adaptation to climate change.

    abstract::The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy invo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13163

    authors: Tack J,Barkley A,Rife TW,Poland JA,Nalley LL

    更新日期:2016-08-01 00:00:00

  • Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.

    abstract::Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, month...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13418

    authors: Rousk K,Michelsen A

    更新日期:2017-04-01 00:00:00

  • Native and exotic plant cover vary inversely along a climate gradient 11 years following stand-replacing wildfire in a dry coniferous forest, Oregon, USA.

    abstract::Community re-assembly following future disturbances will often occur under warmer and more moisture-limited conditions than when current communities assembled. Because the establishment stage is regularly the most sensitive to climate and competition, the trajectory of recovery from disturbance in a changing environme...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12775

    authors: Dodson EK,Root HT

    更新日期:2015-02-01 00:00:00

  • Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic.

    abstract::Climate warming is occurring at an unprecedented rate in the Arctic and is having profound effects on host-parasite interactions, including range expansion. Recently, two species of protostrongylid nematodes have emerged for the first time in muskoxen and caribou on Victoria Island in the western Canadian Arctic Archi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12315

    authors: Kutz SJ,Checkley S,Verocai GG,Dumond M,Hoberg EP,Peacock R,Wu JP,Orsel K,Seegers K,Warren AL,Abrams A

    更新日期:2013-11-01 00:00:00

  • Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture.

    abstract::Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, i...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13219

    authors: Averill C,Waring BG,Hawkes CV

    更新日期:2016-05-01 00:00:00

  • Future climate change driven sea-level rise: secondary consequences from human displacement for island biodiversity.

    abstract::Sea-level rise (SLR) due to global warming will result in the loss of many coastal areas. The direct or primary effects due to inundation and erosion from SLR are currently being assessed; however, the indirect or secondary ecological effects, such as changes caused by the displacement of human populations, have not b...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02736.x

    authors: Wetzel FT,Kissling WD,Beissmann H,Penn DJ

    更新日期:2012-09-01 00:00:00

  • Global patterns and predictors of stem CO2 efflux in forest ecosystems.

    abstract::Stem CO2 efflux (ES) plays an important role in the carbon balance of forest ecosystems. However, its primary controls at the global scale are poorly understood and observation-based global estimates are lacking. We synthesized data from 121 published studies across global forest ecosystems and examined the relationsh...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13188

    authors: Yang J,He Y,Aubrey DP,Zhuang Q,Teskey RO

    更新日期:2016-04-01 00:00:00

  • Invited review: Intergovernmental Panel on Climate Change, agriculture, and food-A case of shifting cultivation and history.

    abstract::Since 1990, the Intergovernmental Panel on Climate Change (IPCC) has produced five Assessment Reports (ARs), in which agriculture as the production of food for humans via crops and livestock have featured in one form or another. A constructed database of the ca. 2,100 cited experiments and simulations in the five ARs ...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14700

    authors: Porter JR,Challinor AJ,Henriksen CB,Howden SM,Martre P,Smith P

    更新日期:2019-08-01 00:00:00

  • Chronic ozone exacerbates the reduction in photosynthesis and acceleration of senescence caused by limited N availability in Nicotiana sylvestris.

    abstract::Both elevated ozone (O(3)) and limiting soil nitrogen (N) availability negatively affect crop performance. However, less is known about how the combination of elevated O(3) and limiting N affect crop growth and metabolism. In this study, we grew tobacco (Nicotiana sylvestris) in ambient and elevated O(3) at two N leve...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12237

    authors: Yendrek CR,Leisner CP,Ainsworth EA

    更新日期:2013-10-01 00:00:00

  • Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms.

    abstract::Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13652

    authors: Lefevre S,McKenzie DJ,Nilsson GE

    更新日期:2017-09-01 00:00:00

  • Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO2.

    abstract::Coccolithophores are important oceanic primary producers not only in terms of photosynthesis but also because they produce calcite plates called coccoliths. Ongoing ocean acidification associated with changing seawater carbonate chemistry may impair calcification and other metabolic functions in coccolithophores. Whil...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14065

    authors: Tong S,Gao K,Hutchins DA

    更新日期:2018-07-01 00:00:00

  • CO2 emissions from an undrained tropical peatland: Interacting influences of temperature, shading and water table depth.

    abstract::Emission of CO2 from tropical peatlands is an important component of the global carbon budget. Over days to months, these fluxes are largely controlled by water table depth. However, the diurnal cycle is less well understood, in part, because most measurements have been collected daily at midday. We used an automated ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14702

    authors: Hoyt AM,Gandois L,Eri J,Kai FM,Harvey CF,Cobb AR

    更新日期:2019-09-01 00:00:00

  • Multi-hypothesis comparison of Farquhar and Collatz photosynthesis models reveals the unexpected influence of empirical assumptions at leaf and global scales.

    abstract::Mechanistic photosynthesis models are at the heart of terrestrial biosphere models (TBMs) simulating the daily, monthly, annual and decadal rhythms of carbon assimilation (A). These models are founded on robust mathematical hypotheses that describe how A responds to changes in light and atmospheric CO2 concentration. ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15366

    authors: Walker AP,Johnson AL,Rogers A,Anderson J,Bridges RA,Fisher RA,Lu D,Ricciuto DM,Serbin SP,Ye M

    更新日期:2021-02-01 00:00:00

  • Current and projected global distribution of Phytophthora cinnamomi, one of the world's worst plant pathogens.

    abstract::Globally, Phytophthora cinnamomi is listed as one of the 100 worst invasive alien species and active management is required to reduce impact and prevent spread in both horticulture and natural ecosystems. Conversely, there are regions thought to be suitable for the pathogen where no disease is observed. We developed a...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13492

    authors: Burgess TI,Scott JK,Mcdougall KL,Stukely MJ,Crane C,Dunstan WA,Brigg F,Andjic V,White D,Rudman T,Arentz F,Ota N,Hardy GE

    更新日期:2017-04-01 00:00:00

  • Warming and drought reduce temperature sensitivity of nitrogen transformations.

    abstract::Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12063

    authors: Novem Auyeung DS,Suseela V,Dukes JS

    更新日期:2013-02-01 00:00:00

  • Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts.

    abstract::Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological a...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12916

    authors: Frank D,Reichstein M,Bahn M,Thonicke K,Frank D,Mahecha MD,Smith P,van der Velde M,Vicca S,Babst F,Beer C,Buchmann N,Canadell JG,Ciais P,Cramer W,Ibrom A,Miglietta F,Poulter B,Rammig A,Seneviratne SI,Walz A,Watte

    更新日期:2015-08-01 00:00:00

  • Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species.

    abstract::Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12173

    authors: Thompson SE,Katul GG

    更新日期:2013-06-01 00:00:00

  • Crop connectivity under climate change: future environmental and geographic risks of potato late blight in Scotland.

    abstract::The impact of climate change on dispersal processes is largely ignored in risk assessments for crop diseases, as inoculum is generally assumed to be ubiquitous and nonlimiting. We suggest that consideration of the impact of climate change on the connectivity of crops for inoculum transmission may provide additional ex...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13368

    authors: Skelsey P,Cooke DE,Lynott JS,Lees AK

    更新日期:2016-11-01 00:00:00

  • Land-use conversion and changing soil carbon stocks in China's 'Grain-for-Green' Program: a synthesis.

    abstract::The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cro...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12508

    authors: Deng L,Liu GB,Shangguan ZP

    更新日期:2014-11-01 00:00:00