Species' traits as predictors of range shifts under contemporary climate change: A review and meta-analysis.

Abstract:

:A growing body of literature seeks to explain variation in range shifts using species' ecological and life-history traits, with expectations that shifts should be greater in species with greater dispersal ability, reproductive potential, and ecological generalization. Despite strong theoretical support for species' traits as predictors of range shifts, empirical evidence from contemporary range shift studies remains limited in extent and consensus. We conducted the first comprehensive review of species' traits as predictors of range shifts, collecting results from 51 studies across multiple taxa encompassing over 11,000 species' responses for 54 assemblages of taxonomically related species occurring together in space. We used studies of assemblages that directly compared geographic distributions sampled in the 20th century prior to climate change with resurveys of distributions after contemporary climate change and then tested whether species traits accounted for heterogeneity in range shifts. We performed a formal meta-analysis on study-level effects of body size, fecundity, diet breadth, habitat breadth, and historic range limit as predictors of range shifts for a subset of 21 studies of 26 assemblages with sufficient data. Range shifts were consistent with predictions based on habitat breadth and historic range limit. However, body size, fecundity, and diet breadth showed no significant effect on range shifts across studies, and multiple studies reported significant relationships that contradicted predictions. Current understanding of species' traits as predictors of range shifts is limited, and standardized study is needed for traits to be valid indicators of vulnerability in assessments of climate change impacts.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

MacLean SA,Beissinger SR

doi

10.1111/gcb.13736

subject

Has Abstract

pub_date

2017-10-01 00:00:00

pages

4094-4105

issue

10

eissn

1354-1013

issn

1365-2486

journal_volume

23

pub_type

杂志文章,meta分析,评审
  • Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts.

    abstract::In the face of increasing cumulative effects from human and natural disturbances, sustaining coral reefs will require a deeper understanding of the drivers of coral resilience in space and time. Here we develop a high-resolution, spatially explicit model of coral dynamics on Australia's Great Barrier Reef (GBR). Our m...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14625

    authors: Mellin C,Matthews S,Anthony KRN,Brown SC,Caley MJ,Johns KA,Osborne K,Puotinen M,Thompson A,Wolff NH,Fordham DA,MacNeil MA

    更新日期:2019-07-01 00:00:00

  • Urban ponds as an aquatic biodiversity resource in modified landscapes.

    abstract::Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic sys...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13401

    authors: Hill MJ,Biggs J,Thornhill I,Briers RA,Gledhill DG,White JC,Wood PJ,Hassall C

    更新日期:2017-03-01 00:00:00

  • Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem.

    abstract::Improving nitrogen (N) management for greater agricultural output while minimizing unintended environmental consequences is critical in the endeavor of feeding the growing population sustainably amid climate change. Enhanced-efficiency fertilizers (EEFs) have been developed to better synchronize fertilizer N release w...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13918

    authors: Li T,Zhang W,Yin J,Chadwick D,Norse D,Lu Y,Liu X,Chen X,Zhang F,Powlson D,Dou Z

    更新日期:2018-02-01 00:00:00

  • A coral reef refuge in the Red Sea.

    abstract::The stability and persistence of coral reefs in the decades to come is uncertain due to global warming and repeated bleaching events that will lead to reduced resilience of these ecological and socio-economically important ecosystems. Identifying key refugia is potentially important for future conservation actions. We...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12356

    authors: Fine M,Gildor H,Genin A

    更新日期:2013-12-01 00:00:00

  • Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale.

    abstract::Pollinators provide crucial ecosystem services that underpin to wild plant reproduction and yields of insect-pollinated crops. Understanding the relative impacts of anthropogenic pressures and climate on the structure of plant-pollinator interaction networks is vital considering ongoing global change and pollinator de...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15474

    authors: Doré M,Fontaine C,Thébault E

    更新日期:2020-12-03 00:00:00

  • The effects of elevated CO2 and eutrophication on surface elevation gain in a European salt marsh.

    abstract::Salt marshes can play a vital role in mitigating the effects of global environmental change by dissipating incident storm wave energy and, through accretion, tracking increasing water depths consequent upon sea level rise. Atmospheric CO2 concentrations and nutrient availability are two key variables that can affect t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13396

    authors: Reef R,Spencer T,Mӧller I,Lovelock CE,Christie EK,McIvor AL,Evans BR,Tempest JA

    更新日期:2017-02-01 00:00:00

  • Treeline advances along the Urals mountain range - driven by improved winter conditions?

    abstract::High-altitude treelines are temperature-limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest-tundra ecotones have changed during the last century along the Ural mountains. In the South, North, ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12613

    authors: Hagedorn F,Shiyatov SG,Mazepa VS,Devi NM,Grigor'ev AA,Bartysh AA,Fomin VV,Kapralov DS,Terent'ev M,Bugman H,Rigling A,Moiseev PA

    更新日期:2014-11-01 00:00:00

  • Global environmental changes impact soil hydraulic functions through biophysical feedbacks.

    abstract::Although only representing 0.05% of global freshwater, or 0.001% of all global water, soil water supports all terrestrial biological life. Soil moisture behaviour in most models is constrained by hydraulic parameters that do not change. Here we argue that biological feedbacks from plants, macro-fauna and the microbiom...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14626

    authors: Robinson DA,Hopmans JW,Filipovic V,van der Ploeg M,Lebron I,Jones SB,Reinsch S,Jarvis N,Tuller M

    更新日期:2019-06-01 00:00:00

  • Life history consequences of developing in anthropogenic noise.

    abstract::When environments change rapidly, adaptive phenotypic plasticity can ameliorate negative effects of environmental change on survival and reproduction. Recent evidence suggests, however, that plastic responses to human-induced environmental change are often maladaptive or insufficient to overcome novel selection pressu...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14610

    authors: Gurule-Small GA,Tinghitella RM

    更新日期:2019-06-01 00:00:00

  • Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters.

    abstract::Lignin is an aromatic plant compound that decomposes more slowly than other organic matter compounds; however, it was recently shown that lignin could decompose as fast as litter bulk carbon in minerals soils. In alpine Histosols, where organic matter dynamics is largely unaffected by mineral constituents, lignin may ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12497

    authors: Duboc O,Dignac MF,Djukic I,Zehetner F,Gerzabek MH,Rumpel C

    更新日期:2014-07-01 00:00:00

  • Lessons from two high CO2 worlds - future oceans and intensive aquaculture.

    abstract::Exponentially rising CO2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO2 directly affects acid-base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13515

    authors: Ellis RP,Urbina MA,Wilson RW

    更新日期:2017-06-01 00:00:00

  • Thermal affinity as the dominant factor changing Mediterranean fish abundances.

    abstract::Recent decades have seen profound changes in species abundance and community composition. In the marine environment, the major anthropogenic drivers of change comprise exploitation, invasion by nonindigenous species, and climate change. However, the magnitude of these stressors has been widely debated and we lack empi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13835

    authors: Givan O,Edelist D,Sonin O,Belmaker J

    更新日期:2018-01-01 00:00:00

  • Improving our understanding of environmental controls on the distribution of C3 and C4 grasses.

    abstract::A number of studies have demonstrated the ecological sorting of C3 and C4 grasses along temperature and moisture gradients. However, previous studies of C3 and C4 grass biogeography have often inadvertently compared species in different and relatively unrelated lineages, which are associated with different environment...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12037

    authors: Pau S,Edwards EJ,Still CJ

    更新日期:2013-01-01 00:00:00

  • Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics.

    abstract::Drained peatlands are hotspots for greenhouse gas (GHG) emissions, which could be mitigated by rewetting and land use change. We performed an ecological/economic analysis of rewetting drained fertile peatlands in a hemiboreal climate using different land use strategies over 80 years. Vegetation, soil processes, and to...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13931

    authors: Kasimir Å,He H,Coria J,Nordén A

    更新日期:2018-08-01 00:00:00

  • Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2 -acidification.

    abstract::Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13987

    authors: Davis BE,Flynn EE,Miller NA,Nelson FA,Fangue NA,Todgham AE

    更新日期:2018-02-01 00:00:00

  • Calcification is not the Achilles' heel of cold-water corals in an acidifying ocean.

    abstract::Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold-water corals are even more vulnerable as they live in areas where aragonite saturation (Ωara ) is low...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12867

    authors: Rodolfo-Metalpa R,Montagna P,Aliani S,Borghini M,Canese S,Hall-Spencer JM,Foggo A,Milazzo M,Taviani M,Houlbrèque F

    更新日期:2015-06-01 00:00:00

  • Global changes may be promoting a rise in select cyanobacteria in nutrient-poor northern lakes.

    abstract::The interacting effects of global changes-including increased temperature, altered precipitation, reduced acidification and increased dissolved organic matter loads to lakes-are anticipated to create favourable environmental conditions for cyanobacteria in northern lakes. However, responses of cyanobacteria to these g...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15189

    authors: Freeman EC,Creed IF,Jones B,Bergström AK

    更新日期:2020-09-01 00:00:00

  • The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States.

    abstract::Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interacti...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13816

    authors: Lu X,Zhou Y,Liu Y,Le Page Y

    更新日期:2018-02-01 00:00:00

  • Ecological niche modeling of coastal dune plants and future potential distribution in response to climate change and sea level rise.

    abstract::Climate change (CC) and sea level rise (SLR) are phenomena that could have severe impacts on the distribution of coastal dune vegetation. To explore this we modeled the climatic niches of six coastal dunes plant species that grow along the shoreline of the Gulf of Mexico and the Yucatan Peninsula, and projected climat...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12236

    authors: Mendoza-González G,Martínez ML,Rojas-Soto OR,Vázquez G,Gallego-Fernández JB

    更新日期:2013-08-01 00:00:00

  • Labile carbon retention compensates for CO2 released by priming in forest soils.

    abstract::Increase of belowground C allocation by plants under global warming or elevated CO2 may promote decomposition of soil organic carbon (SOC) by priming and strongly affects SOC dynamics. The specific effects by priming of SOC depend on the amount and frequency of C inputs. Most previous priming studies have investigated...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12458

    authors: Qiao N,Schaefer D,Blagodatskaya E,Zou X,Xu X,Kuzyakov Y

    更新日期:2014-06-01 00:00:00

  • Ocean acidification increases iodine accumulation in kelp-based coastal food webs.

    abstract::Kelp are main iodine accumulators in the ocean, and their growth and photosynthesis are likely to benefit from elevated seawater CO2 levels due to ocean acidification. However, there are currently no data on the effects of ocean acidification on iodine metabolism in kelp. As key primary producers in coastal ecosystems...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14467

    authors: Xu D,Brennan G,Xu L,Zhang XW,Fan X,Han WT,Mock T,McMinn A,Hutchins DA,Ye N

    更新日期:2019-02-01 00:00:00

  • Risk of genetic maladaptation due to climate change in three major European tree species.

    abstract::Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnera...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13802

    authors: Frank A,Howe GT,Sperisen C,Brang P,Clair JBS,Schmatz DR,Heiri C

    更新日期:2017-12-01 00:00:00

  • Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms.

    abstract::Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13652

    authors: Lefevre S,McKenzie DJ,Nilsson GE

    更新日期:2017-09-01 00:00:00

  • Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China.

    abstract::Treeline responses to environmental changes describe an important phenomenon in global change research. Often conflicting results and generally too short observations are, however, still challenging our understanding of climate-induced treeline dynamics. Here, we use a state-of-the-art dendroecological approach to rec...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13963

    authors: Du H,Liu J,Li MH,Büntgen U,Yang Y,Wang L,Wu Z,He HS

    更新日期:2018-03-01 00:00:00

  • Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change.

    abstract::Current knowledge of phenological shifts in Palearctic bird migration is largely based on data collected on migrants at their breeding grounds; little is known about the phenology of these birds at their nonbreeding grounds, and even less about that of intra-African migrants. Because climate change patterns are not un...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12857

    authors: Bussière EM,Underhill LG,Altwegg R

    更新日期:2015-06-01 00:00:00

  • Evapotranspiration and water yield of a pine-broadleaf forest are not altered by long-term atmospheric [CO2 ] enrichment under native or enhanced soil fertility.

    abstract::Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosy...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14363

    authors: Ward EJ,Oren R,Seok Kim H,Kim D,Tor-Ngern P,Ewers BE,McCarthy HR,Oishi AC,Pataki DE,Palmroth S,Phillips NG,Schäfer KVR

    更新日期:2018-10-01 00:00:00

  • Student's tutorial on bloom hypotheses in the context of phytoplankton annual cycles.

    abstract::Phytoplankton blooms are elements in repeating annual cycles of phytoplankton biomass and they have significant ecological and biogeochemical consequences. Temporal changes in phytoplankton biomass are governed by complex predator-prey interactions and physically driven variations in upper water column growth conditio...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13858

    authors: Behrenfeld MJ,Boss ES

    更新日期:2018-01-01 00:00:00

  • Modeling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology.

    abstract::Understanding the drivers of phenological events is vital for forecasting species' responses to climate change. We developed flexible Bayesian survival regression models to assess a 29-year, individual-level time series of flowering phenology from four taxa of Japanese cherry trees (Prunus spachiana, Prunus × yedoensi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12364

    authors: Allen JM,Terres MA,Katsuki T,Iwamoto K,Kobori H,Higuchi H,Primack RB,Wilson AM,Gelfand A,Silander JA Jr

    更新日期:2014-04-01 00:00:00

  • Points of view matter when assessing biodiversity vulnerability to environmental changes.

    abstract::We can expect different levels of vulnerability depending on the paradigm used to determine the mechanisms that will alter biodiversity under climate change. A multi-paradigm perspective is necessary to get the full picture of biodiversity vulnerability. This is a commentary on Kling et al., 26, 2798-2813. ...

    journal_title:Global change biology

    pub_type: 评论,杂志文章

    doi:10.1111/gcb.15054

    authors: Ordonez A

    更新日期:2020-05-01 00:00:00

  • Human pressures predict species' geographic range size better than biological traits.

    abstract::Geographic range size is the manifestation of complex interactions between intrinsic species traits and extrinsic environmental conditions. It is also a fundamental ecological attribute of species and a key extinction risk correlate. Past research has primarily focused on the role of biological and environmental predi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12834

    authors: Di Marco M,Santini L

    更新日期:2015-06-01 00:00:00