Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters.

Abstract:

:Lignin is an aromatic plant compound that decomposes more slowly than other organic matter compounds; however, it was recently shown that lignin could decompose as fast as litter bulk carbon in minerals soils. In alpine Histosols, where organic matter dynamics is largely unaffected by mineral constituents, lignin may be an important part of soil organic matter (SOM). These soils are expected to experience alterations in temperature and/or physicochemical parameters as a result of global climate change. The effect of these changes on lignin dynamics remains to be examined and the importance of lignin as SOM compound in these soils evaluated. Here, we investigated the decomposition of individual lignin phenols of maize litter incubated for 2 years in-situ in Histosols on an Alpine elevation gradient (900, 1300, and 1900 m above sea level); to this end, we used the cupric oxide oxidation method and determined the phenols' (13) C signature. Maize lignin decomposed faster than bulk maize carbon in the first year (86 vs. 78% decomposed); however, after the second year, lignin and bulk C decomposition did not differ significantly. Lignin mass loss did not correlate with soil temperature after the first year, and even correlated negatively at the end of the second year. Lignin mass loss also correlated negatively with the remaining maize N at the end of the second year, and we interpreted this result as a possible negative influence of nitrogen on lignin degradation, although other factors (notably the depletion of easily degradable carbon sources) may also have played a role at this stage of decomposition. Microbial community composition did not correlate with lignin mass loss, but it did so with the lignin degradation indicators (Ac/Al)s and S/V after 2 years of decomposition. Progressing substrate decomposition toward the final stages thus appears to be linked with microbial community differentiation.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Duboc O,Dignac MF,Djukic I,Zehetner F,Gerzabek MH,Rumpel C

doi

10.1111/gcb.12497

subject

Has Abstract

pub_date

2014-07-01 00:00:00

pages

2272-85

issue

7

eissn

1354-1013

issn

1365-2486

journal_volume

20

pub_type

杂志文章
  • Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from long-term data assimilation.

    abstract::It is critical to accurately estimate carbon (C) turnover time as it dominates the uncertainty in ecosystem C sinks and their response to future climate change. In the absence of direct observations of ecosystem C losses, C turnover times are commonly estimated under the steady state assumption (SSA), which has been a...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14547

    authors: Ge R,He H,Ren X,Zhang L,Yu G,Smallman TL,Zhou T,Yu SY,Luo Y,Xie Z,Wang S,Wang H,Zhou G,Zhang Q,Wang A,Fan Z,Zhang Y,Shen W,Yin H,Lin L

    更新日期:2019-03-01 00:00:00

  • 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation?

    abstract::Free-air CO2 enrichment (FACE) allows open-air elevation of [CO2 ] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta-analysis. Subsequent studies have combine...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.15375

    authors: Ainsworth EA,Long SP

    更新日期:2021-01-01 00:00:00

  • Annual temperature variation as a time machine to understand the effects of long-term climate change on a poleward range shift.

    abstract::Range shifts due to annual variation in temperature are more tractable than range shifts linked to decadal to century long temperature changes due to climate change, providing natural experiments to determine the mechanisms responsible for driving long-term distributional shifts. In this study we couple physiologicall...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14300

    authors: Crickenberger S,Wethey DS

    更新日期:2018-08-01 00:00:00

  • The dynamics of architectural complexity on coral reefs under climate change.

    abstract::One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef-building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamic...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12698

    authors: Bozec YM,Alvarez-Filip L,Mumby PJ

    更新日期:2015-01-01 00:00:00

  • Risk of short-term biodiversity loss under more persistent precipitation regimes.

    abstract::Recent findings indicate that atmospheric warming increases the persistence of weather patterns in the mid-latitudes, resulting in sequences of longer dry and wet periods compared to historic averages. The alternation of progressively longer dry and wet extremes could increasingly select for species with a broad envir...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15501

    authors: Reynaert S,De Boeck HJ,Verbruggen E,Verlinden M,Flowers N,Nijs I

    更新日期:2020-12-23 00:00:00

  • Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments.

    abstract::Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless, in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg(-1) ) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic communi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12109

    authors: Thomsen J,Casties I,Pansch C,Körtzinger A,Melzner F

    更新日期:2013-04-01 00:00:00

  • Non-linearities in bird responses across urbanization gradients: A meta-analysis.

    abstract::Urbanization is one of the most extreme forms of environmental alteration, posing a major threat to biodiversity. We studied the effects of urbanization on avian communities via a systematic review using hierarchical and categorical meta-analyses. Altogether, we found 42 observations from 37 case studies for species r...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.13964

    authors: Batáry P,Kurucz K,Suarez-Rubio M,Chamberlain DE

    更新日期:2018-03-01 00:00:00

  • Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2 -acidification.

    abstract::Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13987

    authors: Davis BE,Flynn EE,Miller NA,Nelson FA,Fangue NA,Todgham AE

    更新日期:2018-02-01 00:00:00

  • Light and warming drive forest understorey community development in different environments.

    abstract::Plant community composition and functional traits respond to chronic drivers such as climate change and nitrogen (N) deposition. In contrast, pulse disturbances from ecosystem management can additionally change resources and conditions. Community responses to combined environmental changes may further depend on land-u...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14955

    authors: Blondeel H,Perring MP,Depauw L,De Lombaerde E,Landuyt D,De Frenne P,Verheyen K

    更新日期:2020-03-01 00:00:00

  • Losing ground: past history and future fate of Arctic small mammals in a changing climate.

    abstract::According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate wa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12157

    authors: Prost S,Guralnick RP,Waltari E,Fedorov VB,Kuzmina E,Smirnov N,van Kolfschoten T,Hofreiter M,Vrieling K

    更新日期:2013-06-01 00:00:00

  • Lessons from two high CO2 worlds - future oceans and intensive aquaculture.

    abstract::Exponentially rising CO2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO2 directly affects acid-base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13515

    authors: Ellis RP,Urbina MA,Wilson RW

    更新日期:2017-06-01 00:00:00

  • Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose-response data.

    abstract::The rising trend in concentrations of ground-level ozone (O3 ) - a common air pollutant and phytotoxin - currently being experienced in some world regions represents a threat to agricultural yield. Soybean (Glycine max (L.) Merr.) is an O3 -sensitive crop species and is experiencing increasing global demand as a dieta...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13318

    authors: Osborne SA,Mills G,Hayes F,Ainsworth EA,Büker P,Emberson L

    更新日期:2016-09-01 00:00:00

  • Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis.

    abstract::The temperature dependence of the reaction kinetics of the Rubisco enzyme implies that, at the level of a chloroplast, the response of photosynthesis to rising atmospheric CO2 concentration (Ca ) will increase with increasing air temperature. Vegetation models incorporating this interaction predict that the response o...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析,评审

    doi:10.1111/gcb.12962

    authors: Baig S,Medlyn BE,Mercado LM,Zaehle S

    更新日期:2015-12-01 00:00:00

  • Is it getting hot in here? Adjustment of hydraulic parameters in six boreal and temperate tree species after 5 years of warming.

    abstract::Global temperatures (T) are rising, and for many plant species, their physiological response to this change has not been well characterized. In particular, how hydraulic parameters may change has only been examined experimentally for a few species. To address this, we measured characteristics of the hydraulic architec...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13323

    authors: McCulloh KA,Petitmermet J,Stefanski A,Rice KE,Rich RL,Montgomery RA,Reich PB

    更新日期:2016-12-01 00:00:00

  • Soil organic matter quality influences mineralization and GHG emissions in cryosols: a field-based study of sub- to high Arctic.

    abstract::Arctic soils store large amounts of labile soil organic matter (SOM) and several studies have suggested that SOM characteristics may explain variations in SOM cycling rates across Arctic landscapes and Arctic ecosystems. The objective of this study was to investigate the influence of routinely measured soil properties...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12125

    authors: Paré MC,Bedard-Haughn A

    更新日期:2013-04-01 00:00:00

  • Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures.

    abstract::Equatorial populations of marine species are predicted to be most impacted by global warming because they could be adapted to a narrow range of temperatures in their local environment. We investigated the thermal range at which aerobic metabolic performance is optimum in equatorial populations of coral reef fish in no...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12455

    authors: Rummer JL,Couturier CS,Stecyk JA,Gardiner NM,Kinch JP,Nilsson GE,Munday PL

    更新日期:2014-04-01 00:00:00

  • Plant diversity loss reduces soil respiration across terrestrial ecosystems.

    abstract::The rapid global biodiversity loss has led to the decline in ecosystem function. Despite the critical importance of soil respiration (Rs) in the global carbon and nutrient cycles, how plant diversity loss affects Rs remains uncertain. Here we present a meta-analysis using 446 paired observations from 95 published stud...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14567

    authors: Chen X,Chen HYH

    更新日期:2019-01-06 00:00:00

  • Nitrogen application is required to realize wheat yield stimulation by elevated CO2 but will not remove the CO2 -induced reduction in grain protein concentration.

    abstract::Elevated CO2 (eCO2 ) generally promotes increased grain yield (GY) and decreased grain protein concentration (GPC), but the extent to which these effects depend on the magnitude of fertilization remains unclear. We collected data on the eCO2 responses of GY, GPC and grain protein yield and their relationships with nit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14586

    authors: Pleijel H,Broberg MC,Högy P,Uddling J

    更新日期:2019-05-01 00:00:00

  • Incorporating climate change adaptation into marine protected area planning.

    abstract::Climate change is increasingly impacting marine protected areas (MPAs) and MPA networks, yet adaptation strategies are rarely incorporated into MPA design and management plans according to the primary scientific literature. Here we review the state of knowledge for adapting existing and future MPAs to climate change a...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.15094

    authors: Wilson KL,Tittensor DP,Worm B,Lotze HK

    更新日期:2020-06-01 00:00:00

  • Vapor-pressure deficit and extreme climatic variables limit tree growth.

    abstract::Assessing the effect of global warming on forest growth requires a better understanding of species-specific responses to climate change conditions. Norway spruce and European beech are among the dominant tree species in Europe and are largely used by the timber industry. Their sensitivity to changes in climate and ext...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13973

    authors: Sanginés de Cárcer P,Vitasse Y,Peñuelas J,Jassey VEJ,Buttler A,Signarbieux C

    更新日期:2018-03-01 00:00:00

  • Tropical cyclone cooling combats region-wide coral bleaching.

    abstract::Coral bleaching has become more frequent and widespread as a result of rising sea surface temperature (SST). During a regional scale SST anomaly, reef exposure to thermal stress is patchy in part due to physical factors that reduce SST to provide thermal refuge. Tropical cyclones (TCs - hurricanes, typhoons) can induc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12541

    authors: Carrigan AD,Puotinen M

    更新日期:2014-05-01 00:00:00

  • Life history consequences of developing in anthropogenic noise.

    abstract::When environments change rapidly, adaptive phenotypic plasticity can ameliorate negative effects of environmental change on survival and reproduction. Recent evidence suggests, however, that plastic responses to human-induced environmental change are often maladaptive or insufficient to overcome novel selection pressu...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14610

    authors: Gurule-Small GA,Tinghitella RM

    更新日期:2019-06-01 00:00:00

  • Rock glaciers in crystalline catchments: Hidden permafrost-related threats to alpine headwater lakes.

    abstract::A global warming-induced transition from glacial to periglacial processes has been identified in mountainous regions around the world. Degrading permafrost in pristine periglacial environments can produce acid rock drainage (ARD) and cause severe ecological damage in areas underlain by sulfide-bearing bedrock. Limnolo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13985

    authors: Ilyashuk BP,Ilyashuk EA,Psenner R,Tessadri R,Koinig KA

    更新日期:2018-04-01 00:00:00

  • The muddle of ages, turnover, transit, and residence times in the carbon cycle.

    abstract::Comparisons among ecosystem models or ecosystem dynamics along environmental gradients commonly rely on metrics that integrate different processes into a useful diagnostic. Terms such as age, turnover, residence, and transit times are often used for this purpose; however, these terms are variably defined in the litera...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13556

    authors: Sierra CA,Müller M,Metzler H,Manzoni S,Trumbore SE

    更新日期:2017-05-01 00:00:00

  • Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species.

    abstract::Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12173

    authors: Thompson SE,Katul GG

    更新日期:2013-06-01 00:00:00

  • Methane emissions from contrasting urban freshwaters: Rates, drivers, and a whole-city footprint.

    abstract::Global urbanization trends impose major alterations on surface waters. This includes impacts on ecosystem functioning that can involve feedbacks on climate through changes in rates of greenhouse gas emissions. The combination of high nutrient supply and shallow depth typical of urban freshwaters is particularly conduc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14799

    authors: Herrero Ortega S,Romero González-Quijano C,Casper P,Singer GA,Gessner MO

    更新日期:2019-12-01 00:00:00

  • Climate change impact and adaptation for wheat protein.

    abstract::Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32-multi-model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14481

    authors: Asseng S,Martre P,Maiorano A,Rötter RP,O'Leary GJ,Fitzgerald GJ,Girousse C,Motzo R,Giunta F,Babar MA,Reynolds MP,Kheir AMS,Thorburn PJ,Waha K,Ruane AC,Aggarwal PK,Ahmed M,Balkovič J,Basso B,Biernath C,Bindi M,Ca

    更新日期:2019-01-01 00:00:00

  • Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest.

    abstract::Most North American forests are at some stage of post-disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short-term stud...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12404

    authors: Bond-Lamberty B,Rocha AV,Calvin K,Holmes B,Wang C,Goulden ML

    更新日期:2014-01-01 00:00:00

  • Impact of priming on global soil carbon stocks.

    abstract::Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through biological priming mechanisms. Currently, poor understanding precludes the incorporation of these priming mechanisms into the global carbon models used for future proje...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14069

    authors: Guenet B,Camino-Serrano M,Ciais P,Tifafi M,Maignan F,Soong JL,Janssens IA

    更新日期:2018-05-01 00:00:00

  • Population trends influence species ability to track climate change.

    abstract::Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species' climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13478

    authors: Ralston J,DeLuca WV,Feldman RE,King DI

    更新日期:2017-04-01 00:00:00