Matrix approach to land carbon cycle modeling: A case study with the Community Land Model.

Abstract:

:The terrestrial carbon (C) cycle has been commonly represented by a series of C balance equations to track C influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C cycle processes well but makes it difficult to track model behaviors. It is also computationally expensive, limiting the ability to conduct comprehensive parametric sensitivity analyses. To overcome these challenges, we have developed a matrix approach, which reorganizes the C balance equations in the original ESM into one matrix equation without changing any modeled C cycle processes and mechanisms. We applied the matrix approach to the Community Land Model (CLM4.5) with vertically-resolved biogeochemistry. The matrix equation exactly reproduces litter and soil organic carbon (SOC) dynamics of the standard CLM4.5 across different spatial-temporal scales. The matrix approach enables effective diagnosis of system properties such as C residence time and attribution of global change impacts to relevant processes. We illustrated, for example, the impacts of CO2 fertilization on litter and SOC dynamics can be easily decomposed into the relative contributions from C input, allocation of external C into different C pools, nitrogen regulation, altered soil environmental conditions, and vertical mixing along the soil profile. In addition, the matrix tool can accelerate model spin-up, permit thorough parametric sensitivity tests, enable pool-based data assimilation, and facilitate tracking and benchmarking of model behaviors. Overall, the matrix approach can make a broad range of future modeling activities more efficient and effective.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Huang Y,Lu X,Shi Z,Lawrence D,Koven CD,Xia J,Du Z,Kluzek E,Luo Y

doi

10.1111/gcb.13948

subject

Has Abstract

pub_date

2018-03-01 00:00:00

pages

1394-1404

issue

3

eissn

1354-1013

issn

1365-2486

journal_volume

24

pub_type

杂志文章
  • The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    abstract::Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitati...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13248

    authors: Fisher JP,Estop-Aragonés C,Thierry A,Charman DJ,Wolfe SA,Hartley IP,Murton JB,Williams M,Phoenix GK

    更新日期:2016-09-01 00:00:00

  • Biomass consumption by surface fires across Earth's most fire prone continent.

    abstract::Landscape fire is a key but poorly understood component of the global carbon cycle. Predicting biomass consumption by fire at large spatial scales is essential to understanding carbon dynamics and hence how fire management can reduce greenhouse gas emissions and increase ecosystem carbon storage. An Australia-wide fie...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14460

    authors: Murphy BP,Prior LD,Cochrane MA,Williamson GJ,Bowman DMJS

    更新日期:2019-01-01 00:00:00

  • Vapor-pressure deficit and extreme climatic variables limit tree growth.

    abstract::Assessing the effect of global warming on forest growth requires a better understanding of species-specific responses to climate change conditions. Norway spruce and European beech are among the dominant tree species in Europe and are largely used by the timber industry. Their sensitivity to changes in climate and ext...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13973

    authors: Sanginés de Cárcer P,Vitasse Y,Peñuelas J,Jassey VEJ,Buttler A,Signarbieux C

    更新日期:2018-03-01 00:00:00

  • Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review.

    abstract::Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14102

    authors: Boyd PW,Collins S,Dupont S,Fabricius K,Gattuso JP,Havenhand J,Hutchins DA,Riebesell U,Rintoul MS,Vichi M,Biswas H,Ciotti A,Gao K,Gehlen M,Hurd CL,Kurihara H,McGraw CM,Navarro JM,Nilsson GE,Passow U,Pörtner HO

    更新日期:2018-06-01 00:00:00

  • Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.

    abstract::Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, month...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13418

    authors: Rousk K,Michelsen A

    更新日期:2017-04-01 00:00:00

  • Land use for animal production in global change studies: Defining and characterizing a framework.

    abstract::Land use for animal production influences the earth system in a variety of ways, including local-scale modification to biodiversity, soils, and nutrient cycling; regional changes in albedo and hydrology; and global-scale changes in greenhouse gas and aerosol concentrations. Pasture is furthermore the single most exten...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13732

    authors: Phelps LN,Kaplan JO

    更新日期:2017-11-01 00:00:00

  • Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from long-term data assimilation.

    abstract::It is critical to accurately estimate carbon (C) turnover time as it dominates the uncertainty in ecosystem C sinks and their response to future climate change. In the absence of direct observations of ecosystem C losses, C turnover times are commonly estimated under the steady state assumption (SSA), which has been a...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14547

    authors: Ge R,He H,Ren X,Zhang L,Yu G,Smallman TL,Zhou T,Yu SY,Luo Y,Xie Z,Wang S,Wang H,Zhou G,Zhang Q,Wang A,Fan Z,Zhang Y,Shen W,Yin H,Lin L

    更新日期:2019-03-01 00:00:00

  • Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO2.

    abstract::Coccolithophores are important oceanic primary producers not only in terms of photosynthesis but also because they produce calcite plates called coccoliths. Ongoing ocean acidification associated with changing seawater carbonate chemistry may impair calcification and other metabolic functions in coccolithophores. Whil...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14065

    authors: Tong S,Gao K,Hutchins DA

    更新日期:2018-07-01 00:00:00

  • Fungal community structure and function shifts with atmospheric nitrogen deposition.

    abstract::Fungal decomposition of soil organic matter depends on soil nitrogen (N) availability. This ecosystem process is being jeopardized by changes in N inputs that have resulted from a tripling of atmospheric N deposition in the last century. Soil fungi are impacted by atmospheric N deposition due to higher N availability,...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15444

    authors: Moore JAM,Anthony MA,Pec GJ,Trocha LK,Trzebny A,Geyer KM,van Diepen LTA,Frey SD

    更新日期:2020-11-07 00:00:00

  • Life history consequences of developing in anthropogenic noise.

    abstract::When environments change rapidly, adaptive phenotypic plasticity can ameliorate negative effects of environmental change on survival and reproduction. Recent evidence suggests, however, that plastic responses to human-induced environmental change are often maladaptive or insufficient to overcome novel selection pressu...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14610

    authors: Gurule-Small GA,Tinghitella RM

    更新日期:2019-06-01 00:00:00

  • Improving our understanding of environmental controls on the distribution of C3 and C4 grasses.

    abstract::A number of studies have demonstrated the ecological sorting of C3 and C4 grasses along temperature and moisture gradients. However, previous studies of C3 and C4 grass biogeography have often inadvertently compared species in different and relatively unrelated lineages, which are associated with different environment...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12037

    authors: Pau S,Edwards EJ,Still CJ

    更新日期:2013-01-01 00:00:00

  • Temperature and soil fertility as regulators of tree line Scots pine growth and survival-implications for the acclimation capacity of northern populations.

    abstract::The acclimation capacity of leading edge tree populations is crucially important in a warming climate. Theoretical considerations suggest that adaptation through genetic change is needed, but this may be a slow process. Both positive and catastrophic outcomes have been predicted, while empirical studies have lagged be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13956

    authors: Rousi M,Possen BJMH,Ruotsalainen S,Silfver T,Mikola J

    更新日期:2018-02-01 00:00:00

  • Land-sparing agriculture sustains higher levels of avian functional diversity than land sharing.

    abstract::The ecological impacts of meeting rising demands for food production can potentially be mitigated by two competing land-use strategies: off-setting natural habitats through intensification of existing farmland (land sparing), or elevating biodiversity within the agricultural matrix via the integration of "wildlife-fri...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14601

    authors: Cannon PG,Gilroy JJ,Tobias JA,Anderson A,Haugaasen T,Edwards DP

    更新日期:2019-05-01 00:00:00

  • Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2.

    abstract::To realistically simulate climate feedbacks from the land surface to the atmosphere, models must replicate the responses of plants to environmental changes. Several processes, operating at various scales, cause the responses of photosynthesis and plant respiration to temperature and CO2 to change over time of exposure...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/j.1365-2486.2012.02797.x

    authors: Smith NG,Dukes JS

    更新日期:2013-01-01 00:00:00

  • Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species.

    abstract::Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range-wide, spatially...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12510

    authors: Pomara LY,LeDee OE,Martin KJ,Zuckerberg B

    更新日期:2014-07-01 00:00:00

  • Relationships between individual-tree mortality and water-balance variables indicate positive trends in water stress-induced tree mortality across North America.

    abstract::Accounting for water stress-induced tree mortality in forest productivity models remains a challenge due to uncertainty in stress tolerance of tree populations. In this study, logistic regression models were developed to assess species-specific relationships between probability of mortality (Pm ) and drought, drawing ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13428

    authors: Hember RA,Kurz WA,Coops NC

    更新日期:2017-04-01 00:00:00

  • Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios.

    abstract::The combination of global and local stressors is leading to a decline in coral reef health globally. In the case of eutrophication, increased concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) are largely attributed to local land use changes. From the global perspective, increased atmospheric CO...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12035

    authors: Reymond CE,Lloyd A,Kline DI,Dove SG,Pandolfi JM

    更新日期:2013-01-01 00:00:00

  • Four decades of functional community change reveals gradual trends and low interlinkage across trophic groups in a large marine ecosystem.

    abstract::The rate at which biological diversity is altered on both land and in the sea, makes temporal community development a critical and fundamental part of understanding global change. With advancements in trait-based approaches, the focus on the impact of temporal change has shifted towards its potential effects on the fu...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14552

    authors: Törnroos A,Pecuchet L,Olsson J,Gårdmark A,Blomqvist M,Lindegren M,Bonsdorff E

    更新日期:2018-12-20 00:00:00

  • Projecting demographic responses to climate change: adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population.

    abstract::Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long-term mark-recapture data set, we examined the influence of multiple direc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12228

    authors: Dybala KE,Eadie JM,Gardali T,Seavy NE,Herzog MP

    更新日期:2013-09-01 00:00:00

  • Predicting shifts in parasite distribution with climate change: a multitrophic level approach.

    abstract::Climate change likely will lead to increasingly favourable environmental conditions for many parasites. However, predictions regarding parasitism's impacts often fail to account for the likely variability in host distribution and how this may alter parasite occurrence. Here, we investigate potential distributional shi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12255

    authors: Pickles RS,Thornton D,Feldman R,Marques A,Murray DL

    更新日期:2013-09-01 00:00:00

  • Upslope development of a tidal marsh as a function of upland land use.

    abstract::To thrive in a time of rapid sea-level rise, tidal marshes will need to migrate upslope into adjacent uplands. Yet little is known about the mechanics of this process, especially in urbanized estuaries, where the adjacent upland is likely to be a mowed lawn rather than a wooded natural area. We studied marsh migration...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13398

    authors: Anisfeld SC,Cooper KR,Kemp AC

    更新日期:2017-02-01 00:00:00

  • Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2 -acidification.

    abstract::Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13987

    authors: Davis BE,Flynn EE,Miller NA,Nelson FA,Fangue NA,Todgham AE

    更新日期:2018-02-01 00:00:00

  • Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations.

    abstract::The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12391

    authors: Loranty MM,Berner LT,Goetz SJ,Jin Y,Randerson JT

    更新日期:2014-02-01 00:00:00

  • Decrease in water clarity of the southern and central North Sea during the 20th century.

    abstract::Light in the marine environment is a key environmental variable coupling physics to marine biogeochemistry and ecology. Weak light penetration reduces light available for photosynthesis, changing energy fluxes through the marine food web. Based on published and unpublished data, this study shows that the central and s...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12854

    authors: Capuzzo E,Stephens D,Silva T,Barry J,Forster RM

    更新日期:2015-06-01 00:00:00

  • Quantifying variation in forest disturbance, and its effects on aboveground biomass dynamics, across the eastern United States.

    abstract::The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio-temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12152

    authors: Vanderwel MC,Coomes DA,Purves DW

    更新日期:2013-05-01 00:00:00

  • Cocoa agroforestry is less resilient to suboptimal and extreme climate than cocoa in full sun: Reply to Norgrove (2017).

    abstract::Resilience of cocoa agroforestry vs. full sun under extreme climatic conditions. In the specific case of our study, the two shade tree species associated with cocoa resulted in strong competition for water and became a disadvantage to the cocoa plants contrary to expected positive effects. ...

    journal_title:Global change biology

    pub_type: 评论,信件

    doi:10.1111/gcb.14044

    authors: Abdulai I,Vaast P,Hoffmann MP,Asare R,Jassogne L,Asten PV,Rötter RP,Graefe S

    更新日期:2018-05-01 00:00:00

  • Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance.

    abstract::Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15283

    authors: Olid C,Klaminder J,Monteux S,Johansson M,Dorrepaal E

    更新日期:2020-10-01 00:00:00

  • 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation?

    abstract::Free-air CO2 enrichment (FACE) allows open-air elevation of [CO2 ] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta-analysis. Subsequent studies have combine...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.15375

    authors: Ainsworth EA,Long SP

    更新日期:2021-01-01 00:00:00

  • Points of view matter when assessing biodiversity vulnerability to environmental changes.

    abstract::We can expect different levels of vulnerability depending on the paradigm used to determine the mechanisms that will alter biodiversity under climate change. A multi-paradigm perspective is necessary to get the full picture of biodiversity vulnerability. This is a commentary on Kling et al., 26, 2798-2813. ...

    journal_title:Global change biology

    pub_type: 评论,杂志文章

    doi:10.1111/gcb.15054

    authors: Ordonez A

    更新日期:2020-05-01 00:00:00

  • Patterns of land use, extensification, and intensification of Brazilian agriculture.

    abstract::Sustainable intensification of agriculture is one of the main strategies to provide global food security. However, its implementation raises enormous political, technological, and social challenges. Meeting these challenges will require, among other things, accurate information on the spatial and temporal patterns of ...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.13314

    authors: Dias LC,Pimenta FM,Santos AB,Costa MH,Ladle RJ

    更新日期:2016-08-01 00:00:00