Quantifying variation in forest disturbance, and its effects on aboveground biomass dynamics, across the eastern United States.

Abstract:

:The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio-temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot-level variation in mortality (relative to a long-term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1-5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data-constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long-term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least- and most-disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long-term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early-successional species. The effects of increased tree mortality on carbon stocks and forest composition may thus depend partly on whether future mortality increases are chronic or episodic in nature.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Vanderwel MC,Coomes DA,Purves DW

doi

10.1111/gcb.12152

subject

Has Abstract

pub_date

2013-05-01 00:00:00

pages

1504-17

issue

5

eissn

1354-1013

issn

1365-2486

journal_volume

19

pub_type

杂志文章
  • Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains.

    abstract::In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Suc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13704

    authors: Tepley AJ,Thompson JR,Epstein HE,Anderson-Teixeira KJ

    更新日期:2017-10-01 00:00:00

  • Application of a two-pool model to soil carbon dynamics under elevated CO2.

    abstract::Elevated atmospheric CO2 concentrations increase plant productivity and affect soil microbial communities, with possible consequences for the turnover rate of soil carbon (C) pools and feedbacks to the atmosphere. In a previous analysis (Van Groenigen et al., 2014), we used experimental data to inform a one-pool model...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13074

    authors: van Groenigen KJ,Xia J,Osenberg CW,Luo Y,Hungate BA

    更新日期:2015-12-01 00:00:00

  • Non-linearities in bird responses across urbanization gradients: A meta-analysis.

    abstract::Urbanization is one of the most extreme forms of environmental alteration, posing a major threat to biodiversity. We studied the effects of urbanization on avian communities via a systematic review using hierarchical and categorical meta-analyses. Altogether, we found 42 observations from 37 case studies for species r...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.13964

    authors: Batáry P,Kurucz K,Suarez-Rubio M,Chamberlain DE

    更新日期:2018-03-01 00:00:00

  • Range margin populations show high climate adaptation lags in European trees.

    abstract::How populations of long-living species respond to climate change depends on phenotypic plasticity and local adaptation processes. Marginal populations are expected to have lags in adaptation (i.e. differences between the climatic optimum that maximizes population fitness and the local climate) because they receive pre...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14881

    authors: Fréjaville T,Vizcaíno-Palomar N,Fady B,Kremer A,Benito Garzón M

    更新日期:2020-02-01 00:00:00

  • Disentangling how climate change can affect an aquatic food web by combining multiple experimental approaches.

    abstract::Predicting the biological effects of climate change presents major challenges due to the interplay of potential biotic and abiotic mechanisms. Climate change can create unexpected outcomes by altering species interactions, and uncertainty over the ability of species to develop in situ tolerance or track environmental ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14717

    authors: Amundrud SL,Srivastava DS

    更新日期:2019-10-01 00:00:00

  • Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts.

    abstract::Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological a...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12916

    authors: Frank D,Reichstein M,Bahn M,Thonicke K,Frank D,Mahecha MD,Smith P,van der Velde M,Vicca S,Babst F,Beer C,Buchmann N,Canadell JG,Ciais P,Cramer W,Ibrom A,Miglietta F,Poulter B,Rammig A,Seneviratne SI,Walz A,Watte

    更新日期:2015-08-01 00:00:00

  • Do increased summer precipitation and N deposition alter fine root dynamics in a Mojave Desert ecosystem?

    abstract::Climate change is expected to impact the amount and distribution of precipitation in the arid southwestern United States. In addition, nitrogen (N) deposition is increasing in these regions due to increased urbanization. Responses of belowground plant activity to increases in soil water content and N have shown incons...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12082

    authors: Verburg PS,Young AC,Stevenson BA,Glanzmann I,Arnone JA 3rd,Marion GM,Holmes C,Nowak RS

    更新日期:2013-03-01 00:00:00

  • Observed and modelled historical trends in the water-use efficiency of plants and ecosystems.

    abstract::Plant water-use efficiency (WUE, the carbon gained through photosynthesis per unit of water lost through transpiration) is a tracer of the plant physiological controls on the exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere. At the leaf level, rising CO2 concentrations tend to inc...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14634

    authors: Lavergne A,Graven H,De Kauwe MG,Keenan TF,Medlyn BE,Prentice IC

    更新日期:2019-07-01 00:00:00

  • Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose-response data.

    abstract::The rising trend in concentrations of ground-level ozone (O3 ) - a common air pollutant and phytotoxin - currently being experienced in some world regions represents a threat to agricultural yield. Soybean (Glycine max (L.) Merr.) is an O3 -sensitive crop species and is experiencing increasing global demand as a dieta...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13318

    authors: Osborne SA,Mills G,Hayes F,Ainsworth EA,Büker P,Emberson L

    更新日期:2016-09-01 00:00:00

  • Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange.

    abstract::Terrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2 ) concentrations, but processes driving the IAV of net ecosystem CO2 exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated wit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14731

    authors: Fu Z,Stoy PC,Poulter B,Gerken T,Zhang Z,Wakbulcho G,Niu S

    更新日期:2019-10-01 00:00:00

  • The climate, the fuel and the land use: Long-term regional variability of biomass burning in boreal forests.

    abstract::The influence of different drivers on changes in North American and European boreal forests biomass burning (BB) during the Holocene was investigated based on the following hypotheses: land use was important only in the southernmost regions, while elsewhere climate was the main driver modulated by changes in fuel type...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14380

    authors: Molinari C,Lehsten V,Blarquez O,Carcaillet C,Davis BAS,Kaplan JO,Clear J,Bradshaw RHW

    更新日期:2018-10-01 00:00:00

  • Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems.

    abstract::Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters infl...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.13059

    authors: Cloern JE,Abreu PC,Carstensen J,Chauvaud L,Elmgren R,Grall J,Greening H,Johansson JO,Kahru M,Sherwood ET,Xu J,Yin K

    更新日期:2016-02-01 00:00:00

  • A review of global potentially available cropland estimates and their consequences for model-based assessments.

    abstract::The world's population is growing and demand for food, feed, fiber, and fuel is increasing, placing greater demand on land and its resources for crop production. We review previously published estimates of global scale cropland availability, discuss the underlying assumptions that lead to differences between estimates...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12733

    authors: Eitelberg DA,van Vliet J,Verburg PH

    更新日期:2015-03-01 00:00:00

  • Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain but reduces soil carbon and nutrient pools.

    abstract::Arctic climate warming will be primarily during winter, resulting in increased snowfall in many regions. Previous tundra research on the impacts of deepened snow has generally been of short duration. Here, we report relatively long-term (7-9 years) effects of experimentally deepened snow on plant community structure, ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14084

    authors: Christiansen CT,Lafreniére MJ,Henry GHR,Grogan P

    更新日期:2018-08-01 00:00:00

  • Methane emissions from contrasting urban freshwaters: Rates, drivers, and a whole-city footprint.

    abstract::Global urbanization trends impose major alterations on surface waters. This includes impacts on ecosystem functioning that can involve feedbacks on climate through changes in rates of greenhouse gas emissions. The combination of high nutrient supply and shallow depth typical of urban freshwaters is particularly conduc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14799

    authors: Herrero Ortega S,Romero González-Quijano C,Casper P,Singer GA,Gessner MO

    更新日期:2019-12-01 00:00:00

  • Global environmental costs of China's thirst for milk.

    abstract::China has an ever-increasing thirst for milk, with a predicted 3.2-fold increase in demand by 2050 compared to the production level in 2010. What are the environmental implications of meeting this demand, and what is the preferred pathway? We addressed these questions by using a nexus approach, to examine the interdep...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14047

    authors: Bai Z,Lee MRF,Ma L,Ledgard S,Oenema O,Velthof GL,Ma W,Guo M,Zhao Z,Wei S,Li S,Liu X,Havlík P,Luo J,Hu C,Zhang F

    更新日期:2018-05-01 00:00:00

  • Quantifying variety-specific heat resistance and the potential for adaptation to climate change.

    abstract::The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy invo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13163

    authors: Tack J,Barkley A,Rife TW,Poland JA,Nalley LL

    更新日期:2016-08-01 00:00:00

  • Deep soil flipping increases carbon stocks of New Zealand grasslands.

    abstract::Sequestration of soil organic carbon (SOC) has been recognized as an opportunity to off-set global carbon dioxide (CO2 ) emissions. Flipping (full inversion to 1-3 m) is a practice used on New Zealand's South Island West Coast to eliminate water-logging in highly podzolized sandy soils. Flipping results in burial of S...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14588

    authors: Schiedung M,Tregurtha CS,Beare MH,Thomas SM,Don A

    更新日期:2019-07-01 00:00:00

  • Phenology and productivity in a montane bird assemblage: Trends and responses to elevation and climate variation.

    abstract::Climate variation has been linked to historical and predicted future distributions and dynamics of wildlife populations. However, demographic mechanisms underlying these changes remain poorly understood. Here, we assessed variation and trends in climate (annual snowfall and spring temperature anomalies) and avian demo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14538

    authors: Saracco JF,Siegel RB,Helton L,Stock SL,DeSante DF

    更新日期:2019-03-01 00:00:00

  • Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems.

    abstract::Identifying the type and strength of interactions between local anthropogenic and other stressors can help to set achievable management targets for degraded marine ecosystems and support their resilience by identifying local actions. We undertook a meta-analysis, using data from 118 studies to test the hypothesis that...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析,评审

    doi:10.1111/gcb.12619

    authors: Strain EM,Thomson RJ,Micheli F,Mancuso FP,Airoldi L

    更新日期:2014-11-01 00:00:00

  • Biodiversity scenarios neglect future land-use changes.

    abstract::Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong the...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13272

    authors: Titeux N,Henle K,Mihoub JB,Regos A,Geijzendorffer IR,Cramer W,Verburg PH,Brotons L

    更新日期:2016-07-01 00:00:00

  • Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP).

    abstract::Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12412

    authors: Ruane AC,McDermid S,Rosenzweig C,Baigorria GA,Jones JW,Romero CC,Dewayne Cecil L

    更新日期:2014-02-01 00:00:00

  • Shifts in coralline algae, macroalgae, and coral juveniles in the Great Barrier Reef associated with present-day ocean acidification.

    abstract::Seawater acidification from increasing CO2 is often enhanced in coastal waters due to elevated nutrients and sedimentation. Our understanding of the effects of ocean and coastal acidification on present-day ecosystems is limited. Here we use data from three independent large-scale reef monitoring programs to assess co...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14985

    authors: Smith JN,Mongin M,Thompson A,Jonker MJ,De'ath G,Fabricius KE

    更新日期:2020-02-12 00:00:00

  • Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages.

    abstract::White light-emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13615

    authors: Davies TW,Bennie J,Cruse D,Blumgart D,Inger R,Gaston KJ

    更新日期:2017-07-01 00:00:00

  • Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs.

    abstract::Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13875

    authors: Arimitsu ML,Hobson KA,Webber DN,Piatt JF,Hood EW,Fellman JB

    更新日期:2018-01-01 00:00:00

  • Projecting demographic responses to climate change: adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population.

    abstract::Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long-term mark-recapture data set, we examined the influence of multiple direc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12228

    authors: Dybala KE,Eadie JM,Gardali T,Seavy NE,Herzog MP

    更新日期:2013-09-01 00:00:00

  • The effects of elevated CO2 and eutrophication on surface elevation gain in a European salt marsh.

    abstract::Salt marshes can play a vital role in mitigating the effects of global environmental change by dissipating incident storm wave energy and, through accretion, tracking increasing water depths consequent upon sea level rise. Atmospheric CO2 concentrations and nutrient availability are two key variables that can affect t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13396

    authors: Reef R,Spencer T,Mӧller I,Lovelock CE,Christie EK,McIvor AL,Evans BR,Tempest JA

    更新日期:2017-02-01 00:00:00

  • Improving our understanding of environmental controls on the distribution of C3 and C4 grasses.

    abstract::A number of studies have demonstrated the ecological sorting of C3 and C4 grasses along temperature and moisture gradients. However, previous studies of C3 and C4 grass biogeography have often inadvertently compared species in different and relatively unrelated lineages, which are associated with different environment...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12037

    authors: Pau S,Edwards EJ,Still CJ

    更新日期:2013-01-01 00:00:00

  • The influence of historical climate changes on Southern Ocean marine predator populations: a comparative analysis.

    abstract::The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher-order predators. Here, we compare the long-term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundanc...

    journal_title:Global change biology

    pub_type: 历史文章,杂志文章,评审

    doi:10.1111/gcb.13104

    authors: Younger JL,Emmerson LM,Miller KJ

    更新日期:2016-02-01 00:00:00

  • Diatoms can be an important exception to temperature-size rules at species and community levels of organization.

    abstract::Climate warming has been linked to an apparent general decrease in body sizes of ectotherms, both across and within taxa, especially in aquatic systems. Smaller body size in warmer geographical regions has also been widely observed. Since body size is a fundamental determinant of many biological attributes, climate-wa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12285

    authors: Adams GL,Pichler DE,Cox EJ,O'Gorman EJ,Seeney A,Woodward G,Reuman DC

    更新日期:2013-11-01 00:00:00