Biodiversity scenarios neglect future land-use changes.

Abstract:

:Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Titeux N,Henle K,Mihoub JB,Regos A,Geijzendorffer IR,Cramer W,Verburg PH,Brotons L

doi

10.1111/gcb.13272

subject

Has Abstract

pub_date

2016-07-01 00:00:00

pages

2505-15

issue

7

eissn

1354-1013

issn

1365-2486

journal_volume

22

pub_type

杂志文章
  • Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus).

    abstract::The European spruce bark beetle Ips typographus is the most important insect pest in Central European forests. Under climate change, its phenology is presumed to be changing and mass infestations becoming more likely. While several studies have investigated climate effects across a latitudinal gradient, it remains an ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14766

    authors: Jakoby O,Lischke H,Wermelinger B

    更新日期:2019-12-01 00:00:00

  • The dynamics of architectural complexity on coral reefs under climate change.

    abstract::One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef-building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamic...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12698

    authors: Bozec YM,Alvarez-Filip L,Mumby PJ

    更新日期:2015-01-01 00:00:00

  • Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose-response data.

    abstract::The rising trend in concentrations of ground-level ozone (O3 ) - a common air pollutant and phytotoxin - currently being experienced in some world regions represents a threat to agricultural yield. Soybean (Glycine max (L.) Merr.) is an O3 -sensitive crop species and is experiencing increasing global demand as a dieta...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13318

    authors: Osborne SA,Mills G,Hayes F,Ainsworth EA,Büker P,Emberson L

    更新日期:2016-09-01 00:00:00

  • Asynchronous onset of eutrophication among shallow prairie lakes of the Northern Great Plains, Alberta, Canada.

    abstract::Coherent timing of agricultural expansion, fertilizer application, atmospheric nutrient deposition, and accelerated global warming is expected to promote synchronous fertilization of regional surface waters and coherent development of algal blooms and lake eutrophication. While broad-scale cyanobacterial expansion is ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13076

    authors: Maheaux H,Leavitt PR,Jackson LJ

    更新日期:2016-01-01 00:00:00

  • Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics.

    abstract::Drained peatlands are hotspots for greenhouse gas (GHG) emissions, which could be mitigated by rewetting and land use change. We performed an ecological/economic analysis of rewetting drained fertile peatlands in a hemiboreal climate using different land use strategies over 80 years. Vegetation, soil processes, and to...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13931

    authors: Kasimir Å,He H,Coria J,Nordén A

    更新日期:2018-08-01 00:00:00

  • Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites.

    abstract::We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15314

    authors: Nelson JA,Pérez-Priego O,Zhou S,Poyatos R,Zhang Y,Blanken PD,Gimeno TE,Wohlfahrt G,Desai AR,Gioli B,Limousin JM,Bonal D,Paul-Limoges E,Scott RL,Varlagin A,Fuchs K,Montagnani L,Wolf S,Delpierre N,Berveiller D,Gharu

    更新日期:2020-12-01 00:00:00

  • Testing for changes in biomass dynamics in large-scale forest datasets.

    abstract::Tropical forest responses to climate and atmospheric change are critical to the future of the global carbon budget. Recent studies have reported increases in estimated above-ground biomass (EAGB) stocks, productivity, and mortality in old-growth tropical forests. These increases could reflect a shift in forest functio...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14833

    authors: Rutishauser E,Wright SJ,Condit R,Hubbell SP,Davies SJ,Muller-Landau HC

    更新日期:2020-03-01 00:00:00

  • Do increased summer precipitation and N deposition alter fine root dynamics in a Mojave Desert ecosystem?

    abstract::Climate change is expected to impact the amount and distribution of precipitation in the arid southwestern United States. In addition, nitrogen (N) deposition is increasing in these regions due to increased urbanization. Responses of belowground plant activity to increases in soil water content and N have shown incons...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12082

    authors: Verburg PS,Young AC,Stevenson BA,Glanzmann I,Arnone JA 3rd,Marion GM,Holmes C,Nowak RS

    更新日期:2013-03-01 00:00:00

  • Climate change and fishing: a century of shifting distribution in North Sea cod.

    abstract::Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in gre...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12513

    authors: Engelhard GH,Righton DA,Pinnegar JK

    更新日期:2014-08-01 00:00:00

  • Annual plants change in size over a century of observations.

    abstract::Studies have documented changes in animal body sizes over the last century, but very little is known about changes in plant sizes, even though reduced plant productivity is potentially responsible for declines in size of other organisms. Here, I ask whether warming trends in the Great Basin have affected plant size by...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12208

    authors: Leger EA

    更新日期:2013-07-01 00:00:00

  • Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    abstract::Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13633

    authors: Dalcin Martins P,Hoyt DW,Bansal S,Mills CT,Tfaily M,Tangen BA,Finocchiaro RG,Johnston MD,McAdams BC,Solensky MJ,Smith GJ,Chin YP,Wilkins MJ

    更新日期:2017-08-01 00:00:00

  • Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities.

    abstract::Many arctic ecological processes are regulated by soil temperature that is tightly interconnected with snow cover distribution and persistence. Recently, various climate-induced changes have been observed in arctic tundra ecosystems, e.g. shrub expansion, resulting in reduction in albedo and greater C fixation in abov...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13294

    authors: Morgado LN,Semenova TA,Welker JM,Walker MD,Smets E,Geml J

    更新日期:2016-09-01 00:00:00

  • Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance.

    abstract::Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15283

    authors: Olid C,Klaminder J,Monteux S,Johansson M,Dorrepaal E

    更新日期:2020-10-01 00:00:00

  • CO2 fertilization and enhanced drought resistance in Greek firs from Cephalonia Island, Greece.

    abstract::Growth-climate relationships were investigated in Greek firs from Ainos Mountain on the island of Cephalonia in western Greece, using dendrochronology. The goal was to test whether tree growth is sensitive to moisture stress, whether such sensitivity has been stable through time, and whether changes in growth-moisture...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12053

    authors: Koutavas A

    更新日期:2013-02-01 00:00:00

  • Nitrogen application is required to realize wheat yield stimulation by elevated CO2 but will not remove the CO2 -induced reduction in grain protein concentration.

    abstract::Elevated CO2 (eCO2 ) generally promotes increased grain yield (GY) and decreased grain protein concentration (GPC), but the extent to which these effects depend on the magnitude of fertilization remains unclear. We collected data on the eCO2 responses of GY, GPC and grain protein yield and their relationships with nit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14586

    authors: Pleijel H,Broberg MC,Högy P,Uddling J

    更新日期:2019-05-01 00:00:00

  • How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?

    abstract::Feeding 9-10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to d...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12160

    authors: Smith P,Haberl H,Popp A,Erb KH,Lauk C,Harper R,Tubiello FN,de Siqueira Pinto A,Jafari M,Sohi S,Masera O,Böttcher H,Berndes G,Bustamante M,Ahammad H,Clark H,Dong H,Elsiddig EA,Mbow C,Ravindranath NH,Rice CW,Roble

    更新日期:2013-08-01 00:00:00

  • Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity.

    abstract::Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO2 accumulation are emerging, however, the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primar...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.14324

    authors: Richier S,Achterberg EP,Humphreys MP,Poulton AJ,Suggett DJ,Tyrrell T,Moore CM

    更新日期:2018-09-01 00:00:00

  • Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.

    abstract::Phenological events, such as bud burst, are strongly linked to ecosystem processes in temperate deciduous forests. However, the exact nature and magnitude of how seasonal and interannual variation in air temperatures influence phenology is poorly understood, and model-based phenology representations fail to capture lo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13122

    authors: Melaas EK,Friedl MA,Richardson AD

    更新日期:2016-02-01 00:00:00

  • Challenging a 15-year-old claim: The North Atlantic Oscillation index as a predictor of spring migration phenology of birds.

    abstract::Many migrant bird species that breed in the Northern Hemisphere show advancement in spring arrival dates. The North Atlantic Oscillation (NAO) index is one of the climatic variables that have been most often investigated and shown to be correlated with these changes in spring arrival. Although the NAO is often claimed...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14023

    authors: Haest B,Hüppop O,Bairlein F

    更新日期:2018-04-01 00:00:00

  • Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea.

    abstract::As the Earth's temperature continues to rise, coral bleaching events become more frequent. Some of the most affected reef ecosystems are located in poorly monitored waters, and thus, the extent of the damage is unknown. We propose the use of marine heatwaves (MHWs) as a new approach for detecting coral reef zones susc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14652

    authors: Genevier LGC,Jamil T,Raitsos DE,Krokos G,Hoteit I

    更新日期:2019-07-01 00:00:00

  • Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems.

    abstract::Human and natural systems have adapted to and evolved within historical climatic conditions. Anthropogenic climate change has the potential to alter these conditions such that onset of unprecedented climatic extremes will outpace evolutionary and adaptive capabilities. To assess whether and when future climate extreme...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14329

    authors: Tan X,Gan TY,Horton DE

    更新日期:2018-10-01 00:00:00

  • Leveraging plant hydraulics to yield predictive and dynamic plant leaf allocation in vegetation models with climate change.

    abstract::Plant functional traits provide a link in process-based vegetation models between plant-level physiology and ecosystem-level responses. Recent advances in physiological understanding and computational efficiency have allowed for the incorporation of plant hydraulic processes in large-scale vegetation models. However, ...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14814

    authors: Trugman AT,Anderegg LDL,Sperry JS,Wang Y,Venturas M,Anderegg WRL

    更新日期:2019-12-01 00:00:00

  • Vegetation growth enhancement in urban environments of the Conterminous United States.

    abstract::Cities are natural laboratories for studying vegetation responses to global environmental changes because of their climate, atmospheric, and biogeochemical conditions. However, few holistic studies have been conducted on the impact of urbanization on vegetation growth. We decomposed the overall impacts of urbanization...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14317

    authors: Jia W,Zhao S,Liu S

    更新日期:2018-09-01 00:00:00

  • An optimality-based model explains seasonal variation in C3 plant photosynthetic capacity.

    abstract::The maximum rate of carboxylation (Vcmax ) is an essential leaf trait determining the photosynthetic capacity of plants. Existing approaches for estimating Vcmax at large scale mainly rely on empirical relationships with proxies such as leaf nitrogen/chlorophyll content or hyperspectral reflectance, or on complicated ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15276

    authors: Jiang C,Ryu Y,Wang H,Keenan TF

    更新日期:2020-07-12 00:00:00

  • Losing ground: past history and future fate of Arctic small mammals in a changing climate.

    abstract::According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate wa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12157

    authors: Prost S,Guralnick RP,Waltari E,Fedorov VB,Kuzmina E,Smirnov N,van Kolfschoten T,Hofreiter M,Vrieling K

    更新日期:2013-06-01 00:00:00

  • The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    abstract::Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitati...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13248

    authors: Fisher JP,Estop-Aragonés C,Thierry A,Charman DJ,Wolfe SA,Hartley IP,Murton JB,Williams M,Phoenix GK

    更新日期:2016-09-01 00:00:00

  • Anthropogenic noise compromises antipredator behaviour in European eels.

    abstract::Increases in noise-generating human activities since the Industrial Revolution have changed the acoustic landscape of many terrestrial and aquatic ecosystems. Anthropogenic noise is now recognized as a major pollutant of international concern, and recent studies have demonstrated impacts on, for instance, hearing thre...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12685

    authors: Simpson SD,Purser J,Radford AN

    更新日期:2015-02-01 00:00:00

  • Hotspots of climate change impacts in sub-Saharan Africa and implications for adaptation and development.

    abstract::Development efforts for poverty reduction and food security in sub-Saharan Africa will have to consider future climate change impacts. Large uncertainties in climate change impact assessments do not necessarily complicate, but can inform development strategies. The design of development strategies will need to conside...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12586

    authors: Müller C,Waha K,Bondeau A,Heinke J

    更新日期:2014-08-01 00:00:00

  • Global environmental changes impact soil hydraulic functions through biophysical feedbacks.

    abstract::Although only representing 0.05% of global freshwater, or 0.001% of all global water, soil water supports all terrestrial biological life. Soil moisture behaviour in most models is constrained by hydraulic parameters that do not change. Here we argue that biological feedbacks from plants, macro-fauna and the microbiom...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14626

    authors: Robinson DA,Hopmans JW,Filipovic V,van der Ploeg M,Lebron I,Jones SB,Reinsch S,Jarvis N,Tuller M

    更新日期:2019-06-01 00:00:00

  • Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest.

    abstract::Most North American forests are at some stage of post-disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short-term stud...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12404

    authors: Bond-Lamberty B,Rocha AV,Calvin K,Holmes B,Wang C,Goulden ML

    更新日期:2014-01-01 00:00:00