Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain but reduces soil carbon and nutrient pools.

Abstract:

:Arctic climate warming will be primarily during winter, resulting in increased snowfall in many regions. Previous tundra research on the impacts of deepened snow has generally been of short duration. Here, we report relatively long-term (7-9 years) effects of experimentally deepened snow on plant community structure, net ecosystem CO2 exchange (NEE), and soil biogeochemistry in Canadian Low Arctic mesic shrub tundra. The snowfence treatment enhanced snow depth from 0.3 to ~1 m, increasing winter soil temperatures by ~3°C, but with no effect on summer soil temperature, moisture, or thaw depth. Nevertheless, shoot biomass of the evergreen shrub Rhododendron subarcticum was near-doubled by the snowfences, leading to a 52% increase in aboveground vascular plant biomass. Additionally, summertime NEE rates, measured in collars containing similar plant biomass across treatments, were consistently reduced ~30% in the snowfenced plots due to decreased ecosystem respiration rather than increased gross photosynthesis. Phosphate in the organic soil layer (0-10 cm depth) and nitrate in the mineral soil layer (15-25 cm depth) were substantially reduced within the snowfences (47-70 and 43%-73% reductions, respectively, across sampling times). Finally, the snowfences tended (p = .08) to reduce mineral soil layer C% by 40%, but with considerable within- and among plot variation due to cryoturbation across the landscape. These results indicate that enhanced snow accumulation is likely to further increase dominance of R. subarcticum in its favored locations, and reduce summertime respiration and soil biogeochemical pools. Since evergreens are relatively slow growing and of low stature, their increased dominance may constrain vegetation-related feedbacks to climate change. We found no evidence that deepened snow promoted deciduous shrub growth in mesic tundra, and conclude that the relatively strong R. subarcticum response to snow accumulation may explain the extensive spatial variability in observed circumpolar patterns of evergreen and deciduous shrub growth over the past 30 years.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Christiansen CT,Lafreniére MJ,Henry GHR,Grogan P

doi

10.1111/gcb.14084

subject

Has Abstract

pub_date

2018-08-01 00:00:00

pages

3508-3525

issue

8

eissn

1354-1013

issn

1365-2486

journal_volume

24

pub_type

杂志文章
  • Open tundra persist, but arctic features decline-Vegetation changes in the warming Fennoscandian tundra.

    abstract::In the forest-tundra ecotone of the North Fennoscandian inland, summer and winter temperatures have increased by two to three centigrades since 1965, which is expected to result in major vegetation changes. To document the expected expansion of woodlands and scrublands and its impact on the arctic vegetation, we repea...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13710

    authors: Vuorinen KEM,Oksanen L,Oksanen T,Pyykönen A,Olofsson J,Virtanen R

    更新日期:2017-09-01 00:00:00

  • The climate, the fuel and the land use: Long-term regional variability of biomass burning in boreal forests.

    abstract::The influence of different drivers on changes in North American and European boreal forests biomass burning (BB) during the Holocene was investigated based on the following hypotheses: land use was important only in the southernmost regions, while elsewhere climate was the main driver modulated by changes in fuel type...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14380

    authors: Molinari C,Lehsten V,Blarquez O,Carcaillet C,Davis BAS,Kaplan JO,Clear J,Bradshaw RHW

    更新日期:2018-10-01 00:00:00

  • Impacts of climate and land use on N2 O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania.

    abstract::In this study, we quantify the impacts of climate and land use on soil N2 O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land-use gradients at Mt. Kilimanjaro, combining long-...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13944

    authors: Gütlein A,Gerschlauer F,Kikoti I,Kiese R

    更新日期:2018-03-01 00:00:00

  • "Got rats?" Global environmental costs of thirst for milk include acute biodiversity impacts linked to dairy feed production.

    abstract::Rodents damaging alfalfa crops typically destined for export to booming Eastern markets often cause economical losses to farmers, but management interventions attempting to control rodents (i.e., use of rodenticides) are themselves damaging to biodiversity. These damages resonate beyond dairy feed producing regions th...

    journal_title:Global change biology

    pub_type: 信件

    doi:10.1111/gcb.14170

    authors: Luque-Larena JJ,Mougeot F,Arroyo B,Lambin X

    更新日期:2018-07-01 00:00:00

  • Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes.

    abstract::The advent of genomic-, transcriptomic- and proteomic-based approaches has revolutionized our ability to describe marine microbial communities, including biogeography, metabolic potential and diversity, mechanisms of adaptation, and phylogeny and evolutionary history. New interdisciplinary approaches are needed to mov...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12983

    authors: Mock T,Daines SJ,Geider R,Collins S,Metodiev M,Millar AJ,Moulton V,Lenton TM

    更新日期:2016-01-01 00:00:00

  • Vegetation growth enhancement in urban environments of the Conterminous United States.

    abstract::Cities are natural laboratories for studying vegetation responses to global environmental changes because of their climate, atmospheric, and biogeochemical conditions. However, few holistic studies have been conducted on the impact of urbanization on vegetation growth. We decomposed the overall impacts of urbanization...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14317

    authors: Jia W,Zhao S,Liu S

    更新日期:2018-09-01 00:00:00

  • Miami heat: Urban heat islands influence the thermal suitability of habitats for ectotherms.

    abstract::The urban heat island effect, where urban areas exhibit higher temperatures than less-developed suburban and natural habitats, occurs in cities across the globe and is well understood from a physical perspective and at broad spatial scales. However, very little is known about how thermal variation caused by urbanizati...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14509

    authors: Battles AC,Kolbe JJ

    更新日期:2019-02-01 00:00:00

  • Treeline advances along the Urals mountain range - driven by improved winter conditions?

    abstract::High-altitude treelines are temperature-limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest-tundra ecotones have changed during the last century along the Ural mountains. In the South, North, ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12613

    authors: Hagedorn F,Shiyatov SG,Mazepa VS,Devi NM,Grigor'ev AA,Bartysh AA,Fomin VV,Kapralov DS,Terent'ev M,Bugman H,Rigling A,Moiseev PA

    更新日期:2014-11-01 00:00:00

  • Modeling optimal responses and fitness consequences in a changing Arctic.

    abstract::Animals must balance a series of costs and benefits while trying to maximize their fitness. For example, an individual may need to choose how much energy to allocate to reproduction versus growth, or how much time to spend on vigilance versus foraging. Their decisions depend on complex interactions between environment...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14681

    authors: Reimer JR,Mangel M,Derocher AE,Lewis MA

    更新日期:2019-10-01 00:00:00

  • Matrix approach to land carbon cycle modeling: A case study with the Community Land Model.

    abstract::The terrestrial carbon (C) cycle has been commonly represented by a series of C balance equations to track C influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C cycle processes well but makes it difficult to track model behaviors. It is a...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13948

    authors: Huang Y,Lu X,Shi Z,Lawrence D,Koven CD,Xia J,Du Z,Kluzek E,Luo Y

    更新日期:2018-03-01 00:00:00

  • A substantial role of soil erosion in the land carbon sink and its future changes.

    abstract::Realistic representation of land carbon sink in climate models is vital for predicting carbon climate feedbacks in a changing world. Although soil erosion that removes land organic carbon has increased substantially since the onset of agriculture, it is rarely included in the current generation of climate models. Usin...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14982

    authors: Tan Z,Leung LR,Li HY,Tesfa T,Zhu Q,Huang M

    更新日期:2020-01-08 00:00:00

  • Fish communities diverge in species but converge in traits over three decades of warming.

    abstract::Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait-based approaches can provide better insight than species-based (i.e. taxonomic) approaches into community assembly and ecosystem functio...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14785

    authors: McLean M,Mouillot D,Lindegren M,Villéger S,Engelhard G,Murgier J,Auber A

    更新日期:2019-11-01 00:00:00

  • Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters.

    abstract::Lignin is an aromatic plant compound that decomposes more slowly than other organic matter compounds; however, it was recently shown that lignin could decompose as fast as litter bulk carbon in minerals soils. In alpine Histosols, where organic matter dynamics is largely unaffected by mineral constituents, lignin may ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12497

    authors: Duboc O,Dignac MF,Djukic I,Zehetner F,Gerzabek MH,Rumpel C

    更新日期:2014-07-01 00:00:00

  • From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach.

    abstract::Maps of continental-scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time-scales. User groups with an interest in past land cover include the clim...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12776

    authors: Fyfe RM,Woodbridge J,Roberts N

    更新日期:2015-03-01 00:00:00

  • Invited review: Intergovernmental Panel on Climate Change, agriculture, and food-A case of shifting cultivation and history.

    abstract::Since 1990, the Intergovernmental Panel on Climate Change (IPCC) has produced five Assessment Reports (ARs), in which agriculture as the production of food for humans via crops and livestock have featured in one form or another. A constructed database of the ca. 2,100 cited experiments and simulations in the five ARs ...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14700

    authors: Porter JR,Challinor AJ,Henriksen CB,Howden SM,Martre P,Smith P

    更新日期:2019-08-01 00:00:00

  • Four decades of plant community change along a continental gradient of warming.

    abstract::Many studies of individual sites have revealed biotic changes consistent with climate warming (e.g., upward elevational distribution shifts), but our understanding of the tremendous variation among studies in the magnitude of such biotic changes is minimal. In this study, we resurveyed forest vegetation plots 40 years...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14568

    authors: Becker-Scarpitta A,Vissault S,Vellend M

    更新日期:2019-05-01 00:00:00

  • Habitat destruction and overexploitation drive widespread declines in all facets of mammalian diversity in the Gran Chaco.

    abstract::Global biodiversity is under high and rising anthropogenic pressure. Yet, how the taxonomic, phylogenetic, and functional facets of biodiversity are affected by different threats over time is unclear. This is particularly true for the two main drivers of the current biodiversity crisis: habitat destruction and overexp...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15418

    authors: Romero-Muñoz A,Fandos G,Benítez-López A,Kuemmerle T

    更新日期:2021-02-01 00:00:00

  • Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment.

    abstract::The effects of global environmental changes on soil nitrogen (N) pools and fluxes have consequences for ecosystem functions such as plant productivity and N retention. In a 13-year grassland experiment, we evaluated how elevated atmospheric carbon dioxide (CO2 ), N fertilization, and plant species richness alter soil ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12096

    authors: Mueller KE,Hobbie SE,Tilman D,Reich PB

    更新日期:2013-04-01 00:00:00

  • Changing spring snow cover dynamics and early season forage availability affect the behavior of a large carnivore.

    abstract::Changing climates are altering wildlife habitats and wildlife behavior in complex ways. Here, we examine how changing spring snow cover dynamics and early season forage availability are altering grizzly bear (Ursus arctos) behavior postden emergence. Telemetry data were used to identify spring activity dates for 48 in...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15295

    authors: Rickbeil GJM,Coops NC,Berman EE,McClelland CJR,Bolton DK,Stenhouse GB

    更新日期:2020-07-28 00:00:00

  • A review of global potentially available cropland estimates and their consequences for model-based assessments.

    abstract::The world's population is growing and demand for food, feed, fiber, and fuel is increasing, placing greater demand on land and its resources for crop production. We review previously published estimates of global scale cropland availability, discuss the underlying assumptions that lead to differences between estimates...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12733

    authors: Eitelberg DA,van Vliet J,Verburg PH

    更新日期:2015-03-01 00:00:00

  • Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.

    abstract::Phenological events, such as bud burst, are strongly linked to ecosystem processes in temperate deciduous forests. However, the exact nature and magnitude of how seasonal and interannual variation in air temperatures influence phenology is poorly understood, and model-based phenology representations fail to capture lo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13122

    authors: Melaas EK,Friedl MA,Richardson AD

    更新日期:2016-02-01 00:00:00

  • Lessons from two high CO2 worlds - future oceans and intensive aquaculture.

    abstract::Exponentially rising CO2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO2 directly affects acid-base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13515

    authors: Ellis RP,Urbina MA,Wilson RW

    更新日期:2017-06-01 00:00:00

  • Climate change and broadacre livestock production across southern Australia. 1. Impacts of climate change on pasture and livestock productivity, and on sustainable levels of profitability.

    abstract::Broadacre livestock production is a major but highly diverse component of agriculture in Australia that will be significantly exposed to predicted changes in climate over coming decades. We used the GRAZPLAN simulation models to assess the impacts of climate change under the SRES A2 scenario across southern Australia....

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12150

    authors: Moore AD,Ghahramani A

    更新日期:2013-05-01 00:00:00

  • Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2 -acidification.

    abstract::Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13987

    authors: Davis BE,Flynn EE,Miller NA,Nelson FA,Fangue NA,Todgham AE

    更新日期:2018-02-01 00:00:00

  • Leveraging plant hydraulics to yield predictive and dynamic plant leaf allocation in vegetation models with climate change.

    abstract::Plant functional traits provide a link in process-based vegetation models between plant-level physiology and ecosystem-level responses. Recent advances in physiological understanding and computational efficiency have allowed for the incorporation of plant hydraulic processes in large-scale vegetation models. However, ...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14814

    authors: Trugman AT,Anderegg LDL,Sperry JS,Wang Y,Venturas M,Anderegg WRL

    更新日期:2019-12-01 00:00:00

  • Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species.

    abstract::Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12173

    authors: Thompson SE,Katul GG

    更新日期:2013-06-01 00:00:00

  • Non-linearities in bird responses across urbanization gradients: A meta-analysis.

    abstract::Urbanization is one of the most extreme forms of environmental alteration, posing a major threat to biodiversity. We studied the effects of urbanization on avian communities via a systematic review using hierarchical and categorical meta-analyses. Altogether, we found 42 observations from 37 case studies for species r...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.13964

    authors: Batáry P,Kurucz K,Suarez-Rubio M,Chamberlain DE

    更新日期:2018-03-01 00:00:00

  • Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks.

    abstract::The eddy covariance (EC) technique is used to measure the net ecosystem exchange (NEE) of CO2 between ecosystems and the atmosphere, offering a unique opportunity to study ecosystem responses to climate change. NEE is the difference between the total CO2 release due to all respiration processes (RECO), and the gross c...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15203

    authors: Tramontana G,Migliavacca M,Jung M,Reichstein M,Keenan TF,Camps-Valls G,Ogee J,Verrelst J,Papale D

    更新日期:2020-09-01 00:00:00

  • Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes.

    abstract::The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological resp...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15273

    authors: Beas-Luna R,Micheli F,Woodson CB,Carr M,Malone D,Torre J,Boch C,Caselle JE,Edwards M,Freiwald J,Hamilton SL,Hernandez A,Konar B,Kroeker KJ,Lorda J,Montaño-Moctezuma G,Torres-Moye G

    更新日期:2020-09-09 00:00:00

  • Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures.

    abstract::Equatorial populations of marine species are predicted to be most impacted by global warming because they could be adapted to a narrow range of temperatures in their local environment. We investigated the thermal range at which aerobic metabolic performance is optimum in equatorial populations of coral reef fish in no...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12455

    authors: Rummer JL,Couturier CS,Stecyk JA,Gardiner NM,Kinch JP,Nilsson GE,Munday PL

    更新日期:2014-04-01 00:00:00