Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback.

Abstract:

:Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought-induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long-term by quantifying wood-anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water-use efficiency (iWUE) from carbon isotopic discrimination. We selected silver fir and Scots pine stands in NE Spain with ongoing dieback processes and compared trees showing contrasting vigour (declining vs nondeclining trees). In both species earlywood tracheids in declining trees showed smaller lumen area with thicker cell wall, inducing a lower theoretical hydraulic conductivity. Parenchyma ray area was similar between the two vigour classes. Wet spring and summer conditions promoted the formation of larger lumen areas, particularly in the case of nondeclining trees. Declining silver firs presented a lower iWUE than conspecific nondeclining trees, but the reverse pattern was observed in Scots pine. The described patterns in wood anatomical traits and iWUE are coherent with a long-lasting deterioration of the hydraulic system in declining trees prior to their dieback. Retrospective quantifications of lumen area permit to forecast dieback in declining trees 2-5 decades before growth decline started. Wood anatomical traits provide a robust tool to reconstruct the long-term capacity of trees to withstand drought-induced dieback.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Pellizzari E,Camarero JJ,Gazol A,Sangüesa-Barreda G,Carrer M

doi

10.1111/gcb.13227

subject

Has Abstract

pub_date

2016-06-01 00:00:00

pages

2125-37

issue

6

eissn

1354-1013

issn

1365-2486

journal_volume

22

pub_type

杂志文章
  • Temperature and soil fertility as regulators of tree line Scots pine growth and survival-implications for the acclimation capacity of northern populations.

    abstract::The acclimation capacity of leading edge tree populations is crucially important in a warming climate. Theoretical considerations suggest that adaptation through genetic change is needed, but this may be a slow process. Both positive and catastrophic outcomes have been predicted, while empirical studies have lagged be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13956

    authors: Rousi M,Possen BJMH,Ruotsalainen S,Silfver T,Mikola J

    更新日期:2018-02-01 00:00:00

  • Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields?

    abstract::In rice cultivation, there are controversial reports on net impacts of nitrogen (N) fertilizers on methane (CH 4 ) emissions. Nitrogen fertilizers increase crop growth as well as alter CH 4 producing (Methanogens) and consuming (Methanotrophs) microbes, and thereby produce complex effects on CH 4 emissions. Objectives...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02762.x

    authors: Banger K,Tian H,Lu C

    更新日期:2012-10-01 00:00:00

  • Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages.

    abstract::White light-emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13615

    authors: Davies TW,Bennie J,Cruse D,Blumgart D,Inger R,Gaston KJ

    更新日期:2017-07-01 00:00:00

  • Fungal community structure and function shifts with atmospheric nitrogen deposition.

    abstract::Fungal decomposition of soil organic matter depends on soil nitrogen (N) availability. This ecosystem process is being jeopardized by changes in N inputs that have resulted from a tripling of atmospheric N deposition in the last century. Soil fungi are impacted by atmospheric N deposition due to higher N availability,...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15444

    authors: Moore JAM,Anthony MA,Pec GJ,Trocha LK,Trzebny A,Geyer KM,van Diepen LTA,Frey SD

    更新日期:2020-11-07 00:00:00

  • Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem.

    abstract::Improving nitrogen (N) management for greater agricultural output while minimizing unintended environmental consequences is critical in the endeavor of feeding the growing population sustainably amid climate change. Enhanced-efficiency fertilizers (EEFs) have been developed to better synchronize fertilizer N release w...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13918

    authors: Li T,Zhang W,Yin J,Chadwick D,Norse D,Lu Y,Liu X,Chen X,Zhang F,Powlson D,Dou Z

    更新日期:2018-02-01 00:00:00

  • Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose-response data.

    abstract::The rising trend in concentrations of ground-level ozone (O3 ) - a common air pollutant and phytotoxin - currently being experienced in some world regions represents a threat to agricultural yield. Soybean (Glycine max (L.) Merr.) is an O3 -sensitive crop species and is experiencing increasing global demand as a dieta...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13318

    authors: Osborne SA,Mills G,Hayes F,Ainsworth EA,Büker P,Emberson L

    更新日期:2016-09-01 00:00:00

  • Urban ponds as an aquatic biodiversity resource in modified landscapes.

    abstract::Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic sys...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13401

    authors: Hill MJ,Biggs J,Thornhill I,Briers RA,Gledhill DG,White JC,Wood PJ,Hassall C

    更新日期:2017-03-01 00:00:00

  • Climatic changes can drive the loss of genetic diversity in a Neotropical savanna tree species.

    abstract::The high rates of future climatic changes, compared with the rates reported for past changes, may hamper species adaptation to new climates or the tracking of suitable conditions, resulting in significant loss of genetic diversity. Trees are dominant species in many biomes and because they are long-lived, they may not...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13685

    authors: Lima JS,Ballesteros-Mejia L,Lima-Ribeiro MS,Collevatti RG

    更新日期:2017-11-01 00:00:00

  • How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change.

    abstract::Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community compositi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13847

    authors: Liang Y,Duveneck MJ,Gustafson EJ,Serra-Diaz JM,Thompson JR

    更新日期:2018-01-01 00:00:00

  • Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater.

    abstract::Multiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15302

    authors: Burdon FJ,Bai Y,Reyes M,Tamminen M,Staudacher P,Mangold S,Singer H,Räsänen K,Joss A,Tiegs SD,Jokela J,Eggen RIL,Stamm C

    更新日期:2020-09-03 00:00:00

  • Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.

    abstract::Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento-San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that ar...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12745

    authors: Knox SH,Sturtevant C,Matthes JH,Koteen L,Verfaillie J,Baldocchi D

    更新日期:2015-02-01 00:00:00

  • Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes.

    abstract::The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological resp...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15273

    authors: Beas-Luna R,Micheli F,Woodson CB,Carr M,Malone D,Torre J,Boch C,Caselle JE,Edwards M,Freiwald J,Hamilton SL,Hernandez A,Konar B,Kroeker KJ,Lorda J,Montaño-Moctezuma G,Torres-Moye G

    更新日期:2020-09-09 00:00:00

  • Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change.

    abstract::Current knowledge of phenological shifts in Palearctic bird migration is largely based on data collected on migrants at their breeding grounds; little is known about the phenology of these birds at their nonbreeding grounds, and even less about that of intra-African migrants. Because climate change patterns are not un...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12857

    authors: Bussière EM,Underhill LG,Altwegg R

    更新日期:2015-06-01 00:00:00

  • Habitat destruction and overexploitation drive widespread declines in all facets of mammalian diversity in the Gran Chaco.

    abstract::Global biodiversity is under high and rising anthropogenic pressure. Yet, how the taxonomic, phylogenetic, and functional facets of biodiversity are affected by different threats over time is unclear. This is particularly true for the two main drivers of the current biodiversity crisis: habitat destruction and overexp...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15418

    authors: Romero-Muñoz A,Fandos G,Benítez-López A,Kuemmerle T

    更新日期:2021-02-01 00:00:00

  • Biogeographic variation in temperature sensitivity of decomposition in forest soils.

    abstract::Determining soil carbon (C) responses to rising temperature is critical for projections of the feedbacks between terrestrial ecosystems, C cycle, and climate change. However, the direction and magnitude of this feedback remain highly uncertain due largely to our limited understanding of the spatial heterogeneity of so...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14838

    authors: Li J,Nie M,Pendall E,Reich PB,Pei J,Noh NJ,Zhu T,Li B,Fang C

    更新日期:2020-03-01 00:00:00

  • The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores.

    abstract::The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13257

    authors: Ding J,Li F,Yang G,Chen L,Zhang B,Liu L,Fang K,Qin S,Chen Y,Peng Y,Ji C,He H,Smith P,Yang Y

    更新日期:2016-08-01 00:00:00

  • Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model.

    abstract::Mesophyll conductance (gm ) is known to affect plant photosynthesis. However, gm is rarely explicitly considered in land surface models (LSMs), with the consequence that its role in ecosystem and large-scale carbon and water fluxes is poorly understood. In particular, the different magnitudes of gm across plant functi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14604

    authors: Knauer J,Zaehle S,De Kauwe MG,Bahar NHA,Evans JR,Medlyn BE,Reichstein M,Werner C

    更新日期:2019-05-01 00:00:00

  • Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    abstract::Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13545

    authors: Rofner C,Peter H,Catalán N,Drewes F,Sommaruga R,Pérez MT

    更新日期:2017-06-01 00:00:00

  • Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada.

    abstract::Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling postfire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand ty...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14641

    authors: Day NJ,Dunfield KE,Johnstone JF,Mack MC,Turetsky MR,Walker XJ,White AL,Baltzer JL

    更新日期:2019-07-01 00:00:00

  • Reproduction and seedling establishment of Picea glauca across the northernmost forest-tundra region in Canada.

    abstract::The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/j.1365-2486.2012.02769.x

    authors: Walker X,Henry GHR,McLeod K,Hofgaard A

    更新日期:2012-10-01 00:00:00

  • Losing ground: past history and future fate of Arctic small mammals in a changing climate.

    abstract::According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate wa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12157

    authors: Prost S,Guralnick RP,Waltari E,Fedorov VB,Kuzmina E,Smirnov N,van Kolfschoten T,Hofreiter M,Vrieling K

    更新日期:2013-06-01 00:00:00

  • Labile carbon retention compensates for CO2 released by priming in forest soils.

    abstract::Increase of belowground C allocation by plants under global warming or elevated CO2 may promote decomposition of soil organic carbon (SOC) by priming and strongly affects SOC dynamics. The specific effects by priming of SOC depend on the amount and frequency of C inputs. Most previous priming studies have investigated...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12458

    authors: Qiao N,Schaefer D,Blagodatskaya E,Zou X,Xu X,Kuzyakov Y

    更新日期:2014-06-01 00:00:00

  • Low phosphorus supply constrains plant responses to elevated CO2 : A meta-analysis.

    abstract::Phosphorus (P) is an essential macro-nutrient required for plant metabolism and growth. Low P availability could potentially limit plant responses to elevated carbon dioxide (eCO2 ), but consensus has yet to be reached on the extent of this limitation. Here, based on data from experiments that manipulated both CO2 and...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析

    doi:10.1111/gcb.15277

    authors: Jiang M,Caldararu S,Zhang H,Fleischer K,Crous KY,Yang J,De Kauwe MG,Ellsworth DS,Reich PB,Tissue DT,Zaehle S,Medlyn BE

    更新日期:2020-10-01 00:00:00

  • Climate warming restructures an aquatic food web over 28 years.

    abstract::Climate warming can restructure lake food webs if trophic levels differ in their thermal responses, but evidence for these changes and their underlying mechanisms remain scarce in nature. Here we document how warming lake temperatures by up to 2°C, rather than changes in trophic state or fishing effort, have restructu...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15347

    authors: Tanentzap AJ,Morabito G,Volta P,Rogora M,Yan ND,Manca M

    更新日期:2020-12-01 00:00:00

  • Precipitation-drainage cycles lead to hot moments in soil carbon dioxide dynamics in a Neotropical wet forest.

    abstract::Soil CO2 concentrations and emissions from tropical forests are modulated seasonally by precipitation. However, subseasonal responses to meteorological events (e.g., storms, drought) are less well known. Here, we present the effects of meteorological variability on short-term (hours to months) dynamics of soil CO2 con...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15194

    authors: Fernandez-Bou AS,Dierick D,Allen MF,Harmon TC

    更新日期:2020-09-01 00:00:00

  • Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database.

    abstract::Enteric methane (CH4 ) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH4 is complex, expensive, and impractical at large scales; therefore, models are commonly used to predict CH4 production. However, building robust prediction models requires extensive data from animals...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14094

    authors: Niu M,Kebreab E,Hristov AN,Oh J,Arndt C,Bannink A,Bayat AR,Brito AF,Boland T,Casper D,Crompton LA,Dijkstra J,Eugène MA,Garnsworthy PC,Haque MN,Hellwing ALF,Huhtanen P,Kreuzer M,Kuhla B,Lund P,Madsen J,Martin C,

    更新日期:2018-08-01 00:00:00

  • The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance.

    abstract::Global change is affecting terrestrial carbon (C) balances. The effect of climate on ecosystem C balance has been largely explored, but the roles of other concurrently changing factors, such as diversity and nutrient availability, remain elusive. We used eddy-covariance C-flux measurements from 62 ecosystems from whic...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15385

    authors: Fernández-Martínez M,Sardans J,Musavi T,Migliavacca M,Iturrate-Garcia M,Scholes RJ,Peñuelas J,Janssens IA

    更新日期:2020-12-01 00:00:00

  • The climate, the fuel and the land use: Long-term regional variability of biomass burning in boreal forests.

    abstract::The influence of different drivers on changes in North American and European boreal forests biomass burning (BB) during the Holocene was investigated based on the following hypotheses: land use was important only in the southernmost regions, while elsewhere climate was the main driver modulated by changes in fuel type...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14380

    authors: Molinari C,Lehsten V,Blarquez O,Carcaillet C,Davis BAS,Kaplan JO,Clear J,Bradshaw RHW

    更新日期:2018-10-01 00:00:00

  • Chronic ozone exacerbates the reduction in photosynthesis and acceleration of senescence caused by limited N availability in Nicotiana sylvestris.

    abstract::Both elevated ozone (O(3)) and limiting soil nitrogen (N) availability negatively affect crop performance. However, less is known about how the combination of elevated O(3) and limiting N affect crop growth and metabolism. In this study, we grew tobacco (Nicotiana sylvestris) in ambient and elevated O(3) at two N leve...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12237

    authors: Yendrek CR,Leisner CP,Ainsworth EA

    更新日期:2013-10-01 00:00:00

  • Global wheat production with 1.5 and 2.0°C above pre-industrial warming.

    abstract::Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extre...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14542

    authors: Liu B,Martre P,Ewert F,Porter JR,Challinor AJ,Müller C,Ruane AC,Waha K,Thorburn PJ,Aggarwal PK,Ahmed M,Balkovič J,Basso B,Biernath C,Bindi M,Cammarano D,De Sanctis G,Dumont B,Espadafor M,Eyshi Rezaei E,Ferrise R,

    更新日期:2018-12-07 00:00:00