Use of the normalcy index for the assessment of abnormal gait in the anterior cruciate ligament deficiency combined with meniscus injury.

Abstract:

:The normalcy index (NI) has been implemented by several studies as a simple index for quantitatively analyzing diffident gait abnormalities, such as children with cerebral palsy and idiopathic toe-walkers. However, whether the NI can be used in anterior cruciate ligament (ACL) deficiency with different types of meniscus injuries or not, has not been reported yet. In this study, 25 patients who combined different types of ACL and meniscus injuries were evaluated by the NI analysis. 12 healthy subjects were used to define the normal range of NI. The result showed that NI values of patients were significantly larger than the control group (P < 0.05). Meanwhile, the tendency of increasing NI values associated with increasing pathology were significant with only 5 subjects in the smallest group (Jonkheere-Terpsta test: P < 0.001). These results indicated that the NI was a concise yet effective tool to evaluate combined ACL and meniscus injury patients. Increasing severity degree of meniscus tears in ACL rupture patients is corresponded to increasing NI values. It also demonstrates that the proposed NI can be applied as a robustness factor to detect the discrepancy between healthy and patient subjects clinically, and has the potential in the quantitative evaluation of pre- or post-surgery and rehabilitation.

authors

Liu X,Huang H,Ren S,Rong Q,Ao Y

doi

10.1080/10255842.2020.1789119

subject

Has Abstract

pub_date

2020-11-01 00:00:00

pages

1102-1108

issue

14

eissn

1025-5842

issn

1476-8259

journal_volume

23

pub_type

杂志文章
  • The influence of the way the muscle force is modeled on the predicted results obtained by solving indeterminate problems for a fast elbow flexion.

    abstract::A critical point in models of the human limbs when the aim is to investigate the motor control is the muscle model. More often the mechanical output of a muscle is considered as one musculotendon force that is a design variable in optimization tasks solved predominantly by static optimization. For dynamic conditions, ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584031000149097

    authors: Raikova R,Aladjov H

    更新日期:2003-06-01 00:00:00

  • Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model.

    abstract::Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to eval...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.916698

    authors: Saul KR,Hu X,Goehler CM,Vidt ME,Daly M,Velisar A,Murray WM

    更新日期:2015-01-01 00:00:00

  • Muscle moment-arms: a key element in muscle-force estimation.

    abstract::A clear and rigorous definition of muscle moment-arms in the context of musculoskeletal systems modelling is presented, using classical mechanics and screw theory. The definition provides an alternative to the tendon excursion method, which can lead to incorrect moment-arms if used inappropriately due to its dependenc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.818666

    authors: Ingram D,Engelhardt C,Farron A,Terrier A,Müllhaupt P

    更新日期:2015-01-01 00:00:00

  • A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait.

    abstract::The aim of this study was to develop a generic musculoskeletal model of a healthy 10-year-old child and examine the effects of geometric scaling on the calculated values of lower-limb muscle forces during gait. Subject-specific musculoskeletal models of five healthy children were developed from in vivo MRI data, and t...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1817405

    authors: Hainisch R,Kranzl A,Lin YC,Pandy MG,Gfoehler M

    更新日期:2020-09-17 00:00:00

  • Artefact-reduced kinematics measurement using a geometric finger model with mixture-prior particle filtering.

    abstract::It is challenging to measure the finger's kinematics of underlying bones in vivo. This paper presents a new method of finger kinematics measurement, using a geometric finger model and several markers deliberately stuck on skin surface. Using a multiple-view camera system, the optimal motion parameters of finger model ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.643467

    authors: Chang CW,Kuo LC,Jou IM,Su FC,Sun YN

    更新日期:2013-01-01 00:00:00

  • Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions.

    abstract::We present a one-dimensional (1D) fluid dynamic model that can predict blood flow and blood pressure during exercise using data collected at rest. To facilitate accurate prediction of blood flow, we developed an impedance boundary condition using morphologically derived structured trees. Our model was validated by com...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840601068638

    authors: Steele BN,Olufsen MS,Taylor CA

    更新日期:2007-02-01 00:00:00

  • Skeletonization of volumetric angiograms for display.

    abstract::The display of three-dimensional angiograms can benefit from the knowledge of quantitative shape features such as tangent and curvature of the centerline of vessels. These can be obtained from a curve-like skeleton representation. If connectivity and topology are preserved, and if geometrical constraints such as smoot...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000003874

    authors: Yi D,Hayward V

    更新日期:2002-10-01 00:00:00

  • Modelling of global boundary effects on harmonic motion imaging of soft tissues.

    abstract::Biomechanical imaging techniques have been developed for soft tissue characterisation and detection of breast tumours. Harmonic motion imaging (HMI) uses a focused ultrasound technology to generate a harmonic radiation force in a localised region inside a soft tissue. The resulting dynamic response is used to map the ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.736500

    authors: Zhao X,Pelegri AA

    更新日期:2014-01-01 00:00:00

  • The effect of direct and indirect force transmission on peri-implant bone stress - a contact finite element analysis.

    abstract::In almost all finite element (FE) studies in dentistry, virtual forces are applied directly to dentures. The purpose of this study was to develop a FE model with non-linear contact simulation using an antagonist as force transmitter and to compare this with a similar model that uses direct force transmission. Furtherm...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1338691

    authors: Rand A,Stiesch M,Eisenburger M,Greuling A

    更新日期:2017-08-01 00:00:00

  • Finite element modelling of radial shock wave therapy for chronic plantar fasciitis.

    abstract::Therapeutic use of high-amplitude pressure waves, or shock wave therapy (SWT), is emerging as a popular method for treating musculoskeletal disorders. However, the mechanism(s) through which this technique promotes healing are unclear. Finite element models of a shock wave source and the foot were constructed to gain ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1096348

    authors: Alkhamaali ZK,Crocombe AD,Solan MC,Cirovic S

    更新日期:2016-01-01 00:00:00

  • Linking mutated primary structure of adrenoleukodystrophy protein with X-linked adrenoleukodystrophy.

    abstract::The phenotype expression in X-linked adrenoleukodystrophy is one of the most intriguing issues of the disease, because there is no general correlation between the type of ABCD1 gene mutation and the clinical phenotype. In this study, we use the cross-impact analysis to build a descriptively quantitative relationship b...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903279974

    authors: Yan S,Wu G

    更新日期:2010-06-01 00:00:00

  • The cushioning function of woodpecker's jaw apparatus during the pecking process.

    abstract::Woodpeckers can withstand a fierce impact during pecking without any brain injury. Although directly involved in the whole pecking, the role of the jaw apparatus played in the impact-resistant process of woodpeckers is still not fully clear. We employed finite element analysis, impact tests in vivo, and post-traumatic...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1838489

    authors: Xu P,Ni Y,Lu S,Liu S,Zhou X,Fan Y

    更新日期:2021-01-13 00:00:00

  • Determining the location of hip joint centre: application of a conchoid's shape to the acetabular cartilage surface of magnetic resonance images.

    abstract::Preoperative planning, or intraoperative navigation of hip surgery, including joint-preserving procedures such as osteotomy or joint-replacing procedures such as total arthroplasty, needs to be performed with a high degree of accuracy to ensure a successful outcome. The ability to precisely localise the hip joint rota...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.495064

    authors: Kang MJ,Sadri H,Stern R,Magnenat-Thalmann N,Hoffmeyer P,Ji HS

    更新日期:2011-01-01 00:00:00

  • Assessment of a fictitious domain method for patient-specific biomechanical modelling of press-fit orthopaedic implantation.

    abstract::In this article, we discuss an application of a fictitious domain method to the numerical simulation of the mechanical process induced by press-fitting cementless femoral implants in total hip replacement surgeries. Here, the primary goal is to demonstrate the feasibility of the method and its advantages over competin...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.545822

    authors: Kallivokas LF,Na SW,Ghattas O,Jaramaz B

    更新日期:2012-01-01 00:00:00

  • Influence of a postural change of the swimmer's head in hydrodynamic performances using 3D CFD.

    abstract::This study deals with recent researches undertaken by the authors in the field of hydrodynamics of human swimming. The aim of this numerical study was to investigate the flow around the entire swimmer's body. The results presented in this article focus on the combination of a 3D computational fluid dynamics code and t...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.683429

    authors: Popa CV,Arfaoui A,Fohanno S,Taïar R,Polidori G

    更新日期:2014-01-01 00:00:00

  • Oscillatory shear stress created by fluid pulsatility versus flexed specimen configurations.

    abstract::Oscillatory shear stress (OSS), caused by time-varying flow environments, may play a critical role in the production of engineered tissue by bone marrow-derived stem cells. This is particularly relevant in heart valve tissue engineering (HVTE), owing to the intense haemodynamic environments that surround native valves...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.715157

    authors: Salinas M,Schmidt DE,Libera M,Lange RR,Ramaswamy S

    更新日期:2014-05-01 00:00:00

  • Density-based load estimation using two-dimensional finite element models: a parametric study.

    abstract::A parametric investigation was conducted to determine the effects on the load estimation method of varying: (1) the thickness of back-plates used in the two-dimensional finite element models of long bones, (2) the number of columns of nodes in the outer medial and lateral sections of the diaphysis to which the back-pl...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840600792451

    authors: Bona MA,Martin LD,Fischer KJ

    更新日期:2006-08-01 00:00:00

  • A technical method using musculoskeletal model to analyse dynamic properties of muscles during human movement.

    abstract::An effective way to avoid invading or injuring the subjects is to use the musculoskeletal model when studying the dynamic properties of muscles in vivo. So, we put forward a joint coordinate system-based method, which mainly focuses on the coordinate's transformation of corresponding muscle attachment points, respecti...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.493508

    authors: Tang G,Zhang XA,Zhang LL,Wang HS,Nie WZ,Wang CT

    更新日期:2011-07-01 00:00:00

  • The influence of musculoskeletal forces on the growth of the prenatal cortex in the ilium: a finite element study.

    abstract::Remodelling and adaptation of bone within the pelvis is believed to be influenced by the mechanical strains generated during locomotion. Variation in the cortical bone thickness observed in the prenatal ilium has been linked to the musculoskeletal loading associated with in utero movements; for example the development...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1777546

    authors: Watson PJ,Fagan MJ,Dobson CA

    更新日期:2020-10-01 00:00:00

  • The contribution of the glenoid labrum to glenohumeral stability under physiological joint loading using finite element analysis.

    abstract::The labrum contributes to passive glenohumeral joint stability. Cadaveric studies have demonstrated that this has position and load dependency, which has not been quantified under physiological loads. This study aims to validate subject-specific finite element (FE) models against in vitro measurements of joint stabili...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1399262

    authors: Klemt C,Nolte D,Grigoriadis G,Di Federico E,Reilly P,Bull AMJ

    更新日期:2017-11-01 00:00:00

  • Multi disease-prediction framework using hybrid deep learning: an optimal prediction model.

    abstract::Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient's symptoms. For several ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1869726

    authors: Ampavathi A,Saradhi TV

    更新日期:2021-01-11 00:00:00

  • Mechanical vulnerability of lower second premolar utilising visco-elastic dynamic stress analysis.

    abstract::Stress analysis determines vulnerability of dental tissues to external loads. Stress values depend on loading conditions, mechanical properties and constrains of structural components. The critical stress levels lead to tissue damage. The aim of this study is to analyse dynamic stress distribution of lower second prem...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840902788579

    authors: Khani MM,Tafazzoli-Shadpour M,Aghajani F,Naderi P

    更新日期:2009-10-01 00:00:00

  • In vivo measurement of surface skin strain during human gait to improve the design of rehabilitation devices.

    abstract::When designing any rehabilitation, sportswear or exoskeleton device the mechanical behaviour of the body segment must be known, specifically the skin, because an excessive tissue strain may lead to ulceration and bedsores. To date, it is not known if the kinematic variability between subjects have an effect on the ski...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1655549

    authors: Barrios-Muriel J,Romero Sánchez F,Alonso Sánchez FJ,Rodríguez Salgado D

    更新日期:2019-11-01 00:00:00

  • An image-based computational model of oscillatory flow in the proximal part of tracheobronchial trees.

    abstract::A computational model of an oscillatory laminar flow of an incompressible Newtonian fluid has been carried out in the proximal part of human tracheobronchial trees, either normal or with a strongly stenosed right main bronchus. After acquisition with a multislice spiral CT, the thoracic images are processed to reconst...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840500289624

    authors: Fetita C,Mancini S,Perchet D,Prêteux F,Thiriet M,Vial L

    更新日期:2005-08-01 00:00:00

  • Computational biomechanical analysis of postoperative inferior tibiofibular syndesmosis: a modified modeling method.

    abstract::To analyze the biomechanical effect of syndesmotic screw through three and four cortices, a total of 12 finite element models simulating healthy ankles, tibiofibular syndesmosis injured ankles, and post-operative ankles by screw fixations through three or four cortices were built. A set of biomechanical data were obta...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1472770

    authors: Li H,Chen Y,Qiang M,Zhang K,Jiang Y,Zhang Y,Jia X

    更新日期:2018-04-01 00:00:00

  • Finite element and photoelastic modelling of an abdominal aortic aneurysm: a comparative study.

    abstract::Rupture prediction of abdominal aortic aneurysms (AAAs) remains a clinical challenge. Finite element analysis (FEA) may allow for improved identification for intervention timing, but the method needs further substantiation. In this study, experimental photoelastic method and finite element techniques were compared usi...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.574618

    authors: Callanan A,Morris LG,McGloughlin TM

    更新日期:2012-01-01 00:00:00

  • Proposition of an outflow boundary approach for carotid artery stenosis CFD simulation.

    abstract::The purpose of this study was to propose an innovative approach of setting outlet boundary conditions for the computational fluid dynamics (CFD) simulation of human common carotid arteries (CCAs) bifurcation based on the concept of energy loss minimisation at flow bifurcation. Comparisons between this new approach and...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.625358

    authors: Zhang Y,Furusawa T,Sia SF,Umezu M,Qian Y

    更新日期:2013-01-01 00:00:00

  • Validation performance comparison for finite element models of the human brain.

    abstract::The objective of this study was to compare the performance of six validated brain finite element (FE) models to localized brain motion validation data in five experimental configurations. Model performance was measured using the objective metric CORA (CORrelation and Analysis), where higher ratings represent better co...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1340462

    authors: Miller LE,Urban JE,Stitzel JD

    更新日期:2017-09-01 00:00:00

  • Simulation of swallowing dysfunction and mechanical ventilation after a Montgomery T-tube insertion.

    abstract::The Montgomery T-tube is used as a combined tracheal stent and airway after laryngotracheoplasty, to keep the lumen open and prevent mucosal laceration from scarring. It is valuable in the management of upper and mid-tracheal lesions, while invaluable in long and multisegmental stenting lesions. Numerical simulations ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.930448

    authors: Trabelsi O,Malvè M,Mena Tobar A,Doblaré M

    更新日期:2015-01-01 00:00:00

  • Role of differential adhesion in cell cluster evolution: from vasculogenesis to cancer metastasis.

    abstract::Cell-cell and cell-matrix adhesions are fundamental to numerous physiological processes, including angiogenesis, tumourigenesis, metastatic spreading and wound healing. We use cellular potts model to computationally predict the organisation of cells within a 3D matrix. The energy potentials regulating cell-cell (JCC) ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.792917

    authors: Singh J,Hussain F,Decuzzi P

    更新日期:2015-01-01 00:00:00