SIRT5 regulation of ammonia-induced autophagy and mitophagy.

Abstract:

:In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved in ammonia production also in nonliver cells, clones of human breast cancer cell lines MDA-MB-231 and mouse myoblast C2C12, overexpressing or silenced for SIRT5 were produced. Our results show that ammonia production increased in SIRT5-silenced and decreased in SIRT5-overexpressing cells. We also obtained the same ammonia increase when using a new specific inhibitor of SIRT5 called MC3482. SIRT5 regulates ammonia production by controlling glutamine metabolism. In fact, in the mitochondria, glutamine is transformed in glutamate by the enzyme glutaminase, a reaction producing ammonia. We found that SIRT5 and glutaminase coimmunoprecipitated and that SIRT5 inhibition resulted in an increased succinylation of glutaminase. We next determined that autophagy and mitophagy were increased by ammonia by measuring autophagic proteolysis of long-lived proteins, increase of autophagy markers MAP1LC3B, GABARAP, and GABARAPL2, mitophagy markers BNIP3 and the PINK1-PARK2 system as well as mitochondrial morphology and dynamics. We observed that autophagy and mitophagy increased in SIRT5-silenced cells and in WT cells treated with MC3482 and decreased in SIRT5-overexpressing cells. Moreover, glutaminase inhibition or glutamine withdrawal completely prevented autophagy. In conclusion we propose that the role of SIRT5 in nonliver cells is to regulate ammonia production and ammonia-induced autophagy by regulating glutamine metabolism.

journal_name

Autophagy

journal_title

Autophagy

authors

Polletta L,Vernucci E,Carnevale I,Arcangeli T,Rotili D,Palmerio S,Steegborn C,Nowak T,Schutkowski M,Pellegrini L,Sansone L,Villanova L,Runci A,Pucci B,Morgante E,Fini M,Mai A,Russo MA,Tafani M

doi

10.1080/15548627.2015.1009778

subject

Has Abstract

pub_date

2015-01-01 00:00:00

pages

253-70

issue

2

eissn

1554-8627

issn

1554-8635

journal_volume

11

pub_type

杂志文章
  • The role of Tecpr1 in selective autophagy as a cargo receptor.

    abstract::Bacterial intrusion of host cells can be recognized by the innate immune system, including autophagy, via multiple cellular pathways. We have identified Tecpr1 as an Atg5-binding partner, and found that Tecpr1 interacts with the Atg12-Atg5-Atg16L1 complex via binding to Atg5. In Shigella infected cells, Tecpr1 colocal...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.11.17151

    authors: Ogawa M,Sasakawa C

    更新日期:2011-11-01 00:00:00

  • Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling.

    abstract::Quercetin, a dietary antioxidant present in fruits and vegetables, is a promising cancer chemopreventive agent that inhibits tumor promotion by inducing cell cycle arrest and promoting apoptotic cell death. In this study, we examined the biological activities of quercetin against gastric cancer. Our studies demonstrat...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.9.15863

    authors: Wang K,Liu R,Li J,Mao J,Lei Y,Wu J,Zeng J,Zhang T,Wu H,Chen L,Huang C,Wei Y

    更新日期:2011-09-01 00:00:00

  • The NEDD4-USP13 axis facilitates autophagy via deubiquitinating PIK3C3.

    abstract::Macroautophagy/autophagy, an evolutionarily conserved eukaryotic bioprocess, plays an important role in the bulk degradation of intracellular macromolecules, organelles, and invading pathogens. PIK3C3/VPS34 (phosphatidylinositol 3-kinase catalytic subunit type 3) functions as a key protein in autophagy initiation and ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1743071

    authors: Xie W,Jin S,Cui J

    更新日期:2020-06-01 00:00:00

  • Amelioration of protein misfolding disease by rapamycin: translation or autophagy?

    abstract::Rapamycin is an inhibitor of mTOR, a key component of the mTORC1 complex that controls the growth and survival of cells in response to growth factors, nutrients, energy balance and stresses. The downstream targets of mTORC1 include ribosome biogenesis, transcription, translation and macroautophagy. Recently it was pro...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6059

    authors: Wyttenbach A,Hands S,King MA,Lipkow K,Tolkovsky AM

    更新日期:2008-05-01 00:00:00

  • The cadmium-induced death of mesangial cells results in nephrotoxicity.

    abstract::This study summarizes our most recent findings on the mechanisms underlying the cadmium-induced death of mesangial cells, which leads to nephrotoxicity. Multiple pathways participate in cadmium-induced nephrotoxicity. In the ROS-GSK-3beta autophagy pathway, cadmium induces ROS most likely from the mitochondria, and th...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.4.8311

    authors: Yang LY,Wu KH,Chiu WT,Wang SH,Shih CM

    更新日期:2009-05-01 00:00:00

  • Cocaine-mediated microglial activation involves the ER stress-autophagy axis.

    abstract::Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explore...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1052205

    authors: Guo ML,Liao K,Periyasamy P,Yang L,Cai Y,Callen SE,Buch S

    更新日期:2015-01-01 00:00:00

  • Multivesicular bodies and autophagy in erythrocyte maturation.

    abstract::During reticulocyte maturation, hematopoietic progenitors undergo numerous changes to reach the final functional stage which concludes with the release of reticulocytes and erythrocytes into circulation. During this process some proteins, which are not required in the mature stage, are sequestered in the internal vesi...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.2.2.2350

    authors: Fader CM,Colombo MI

    更新日期:2006-04-01 00:00:00

  • Essential control of mitochondrial morphology and function by chaperone-mediated autophagy through degradation of PARK7.

    abstract::As a selective degradation system, chaperone-mediated autophagy (CMA) is essential for maintaining cellular homeostasis and survival under stress conditions. Increasing evidence points to an important role for the dysfunction of CMA in the pathogenesis of Parkinson disease (PD). However, the mechanisms by which CMA re...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1179401

    authors: Wang B,Cai Z,Tao K,Zeng W,Lu F,Yang R,Feng D,Gao G,Yang Q

    更新日期:2016-08-02 00:00:00

  • A cancer associated somatic mutation in LC3B attenuates its binding to E1-like ATG7 protein and subsequent lipidation.

    abstract::Macroautophagy/autophagy is a conserved catabolic process that maintains cellular homeostasis under basal growth and stress conditions. In cancer, autophagy can either prevent or promote tumor growth, at early or advanced stages, respectively. We screened public databases to identify autophagy-related somatic mutation...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1525476

    authors: Nuta GC,Gilad Y,Gershoni M,Sznajderman A,Schlesinger T,Bialik S,Eisenstein M,Pietrokovski S,Kimchi A

    更新日期:2019-03-01 00:00:00

  • Oncogene-induced autophagy and the Goldilocks principle.

    abstract::Although several oncogenes enhance autophagic flux, the molecular mechanism and consequences of oncogene-induced autophagy remain to be clarified. We have recently shown that expression of oncogenic H-Ras (V12) promotes autophagy through upregulation of Beclin 1 and the BH3-only protein Noxa. H-Ras-expressing cells un...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.8.15821

    authors: Martin SJ

    更新日期:2011-08-01 00:00:00

  • Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis.

    abstract::The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.7.15596

    authors: Yang DS,Stavrides P,Mohan PS,Kaushik S,Kumar A,Ohno M,Schmidt SD,Wesson DW,Bandyopadhyay U,Jiang Y,Pawlik M,Peterhoff CM,Yang AJ,Wilson DA,St George-Hyslop P,Westaway D,Mathews PM,Levy E,Cuervo AM,Nixon RA

    更新日期:2011-07-01 00:00:00

  • PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy.

    abstract::Prion protein modulates many cellular functions including the secretion of trophic factors by astrocytes. Some of these factors are found in exosomes, which are formed within multivesicular bodies (MVBs) and secreted into the extracellular space to modulate cell-cell communication. The mechanisms underlying exosome bi...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1226735

    authors: Dias MV,Teixeira BL,Rodrigues BR,Sinigaglia-Coimbra R,Porto-Carreiro I,Roffé M,Hajj GN,Martins VR

    更新日期:2016-11-01 00:00:00

  • Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts.

    abstract::Chronic drinking leads to myocardial contractile dysfunction where ethanol metabolism plays an essential role. Acetaldehyde, the main ethanol metabolite, mediates alcohol-induced cell injury although the underlying mechanism is still elusive. This study was designed to examine the mechanism involved in accelerated eth...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.18997

    authors: Guo R,Hu N,Kandadi MR,Ren J

    更新日期:2012-04-01 00:00:00

  • The role of MTMR14 in autophagy and in muscle disease.

    abstract::Phosphoinositides (PIs) are a group of low-abundance phospholipids that play a critical role in the control of organelle and membrane traffic. There is strong evidence that specific PIs are also important for the regulation of autophagy. PIs are modified by a complex network of lipid kinases and phosphatases. A recent...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.6.12624

    authors: Gibbs EM,Feldman EL,Dowling JJ

    更新日期:2010-08-01 00:00:00

  • HIF1A Alleviates compression-induced apoptosis of nucleus pulposus derived stem cells via upregulating autophagy.

    abstract::Intervertebral disc degeneration (IDD) is the primary pathological mechanism that underlies low back pain. Overloading-induced cell death, especially endogenous stem cell death, is the leading factor that undermines intrinsic repair and aggravates IDD. Previous research has separately studied the effect of oxygen conc...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2021.1872227

    authors: He R,Wang Z,Cui M,Liu S,Wu W,Chen M,Wu Y,Qu Y,Lin H,Chen S,Wang B,Shao Z

    更新日期:2021-01-18 00:00:00

  • The ULK1 complex: sensing nutrient signals for autophagy activation.

    abstract::The Atg1/ULK1 complex plays a central role in starvation-induced autophagy, integrating signals from upstream sensors such as MTOR and AMPK and transducing them to the downstream autophagy pathway. Much progress has been made in the last few years in understanding the mechanisms by which the complex is regulated throu...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.23323

    authors: Wong PM,Puente C,Ganley IG,Jiang X

    更新日期:2013-02-01 00:00:00

  • Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts.

    abstract::Autophagy is a degradative process conserved among eukaryotic cells. It allows the elimination of cytoplasm including aberrant protein aggregates and damaged organelles. Accordingly, it is implicated in normal developmental processes and also serves a protective role in tumor suppression and elimination of invading pa...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.1.2.1840

    authors: Reggiori F,Shintani T,Nair U,Klionsky DJ

    更新日期:2005-07-01 00:00:00

  • The MTOR signaling pathway regulates macrophage differentiation from mouse myeloid progenitors by inhibiting autophagy.

    abstract::Understanding of the mechanism for myeloid differentiation provides important insights into the hematopoietic developmental processes. By using an ESC-derived myeloid progenitor cell model, we found that CSF2/GM-CSF triggered macrophage differentiation and activation of the MTOR signaling pathway. Activation or inhibi...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1578040

    authors: Zhang M,Liu F,Zhou P,Wang Q,Xu C,Li Y,Bian L,Liu Y,Zhou J,Wang F,Yao Y,Fang Y,Li D

    更新日期:2019-07-01 00:00:00

  • A possible role of Atg8 homologs as a scaffold for signal transduction.

    abstract::Atg8 and its homologs are essential for autophagosome formation in various species. In animal cells, Atg8 homologs have an additional function in clearance of damaged organelles and bacteria, acting as a landmark for selective autophagy. We have recently shown that OATL1, a Rab-GTPase-activating protein (Rab-GAP), is ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.9.16178

    authors: Itoh T,Fukuda M

    更新日期:2011-09-01 00:00:00

  • ER-phagy: selective autophagy of the endoplasmic reticulum.

    abstract::Throughout their life, cells must maintain homeostasis while facing constantly fluctuating demands on their different organelles. A major mechanism for the homeostatic control of organelle function is the unfolded protein response (UPR), a signaling pathway that triggers a comprehensive remodeling of the endoplasmic r...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.3930

    authors: Bernales S,Schuck S,Walter P

    更新日期:2007-05-01 00:00:00

  • Autophagy-mediated regulation of macrophages and its applications for cancer.

    abstract::Autophagy is a highly conserved homeostatic pathway that plays an important role in tumor development and progression by acting on cancer cells in a cell-autonomous mechanism. However, the solid tumor is not an island, but rather an ensemble performance that includes nonmalignant stromal cells, such as macrophages. A ...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.26927

    authors: Chen P,Cescon M,Bonaldo P

    更新日期:2014-02-01 00:00:00

  • An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity.

    abstract::The ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are the two most important components of cellular mechanisms for protein degradation. In the present study we investigated the functional relationship of the two systems and the interactional role of p53 in vitro. Our study showed that the...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.5.8377

    authors: Du Y,Yang D,Li L,Luo G,Li T,Fan X,Wang Q,Zhang X,Wang Y,Le W

    更新日期:2009-07-01 00:00:00

  • Multistep regulation of TFEB by MTORC1.

    abstract::The master regulator of lysosome biogenesis, TFEB, is regulated by MTORC1 through phosphorylation at S211, and a S211A mutation increases nuclear localization. However, TFEBS211A localizes diffusely in both cytoplasm and nucleus and, as we show, retains regulation by MTORC1. Here, we report that endogenous TFEB is pho...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1271514

    authors: Vega-Rubin-de-Celis S,Peña-Llopis S,Konda M,Brugarolas J

    更新日期:2017-03-04 00:00:00

  • Upregulation of ATG7 attenuates motor neuron dysfunction associated with depletion of TARDBP/TDP-43.

    abstract::A shared neuropathological hallmark in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is nuclear clearance and cytoplasmic aggregation of TARDBP/TDP-43 (TAR DNA binding protein). We previously showed that the ability of TARDBP to repress nonconserved cryptic exons was impaired in brains of patie...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1635379

    authors: Donde A,Sun M,Jeong YH,Wen X,Ling J,Lin S,Braunstein K,Nie S,Wang S,Chen L,Wong PC

    更新日期:2020-04-01 00:00:00

  • Purification of autophagosomes from rat hepatocytes.

    abstract::To facilitate the purification of rat liver autophagosomes, isolated rat hepatocytes are first incubated for 2 h at 37°C with vinblastine, which induces autophagosome accumulation by blocking the fusion of these organelles with endosomes and lysosomes. The hepatocytes are then electrodisrupted and homogenized, and the...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.4.11272

    authors: Seglen PO,Brinchmann MF

    更新日期:2010-05-01 00:00:00

  • TBC1D20 mediates autophagy as a key regulator of autophagosome maturation.

    abstract::In humans, loss of TBC1D20 (TBC1 domain family, member 20) protein function causes Warburg Micro syndrome 4 (WARBM4), an autosomal recessive disorder characterized by congenital eye, brain, and genital abnormalities. TBC1D20-deficient mice exhibit ocular abnormalities and male infertility. TBC1D20 is a ubiquitously ex...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1199300

    authors: Sidjanin DJ,Park AK,Ronchetti A,Martins J,Jackson WT

    更新日期:2016-10-02 00:00:00

  • In mammalian skeletal muscle, phosphorylation of TOMM22 by protein kinase CSNK2/CK2 controls mitophagy.

    abstract::In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and prop...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1403716

    authors: Kravic B,Harbauer AB,Romanello V,Simeone L,Vögtle FN,Kaiser T,Straubinger M,Huraskin D,Böttcher M,Cerqua C,Martin ED,Poveda-Huertes D,Buttgereit A,Rabalski AJ,Heuss D,Rudolf R,Friedrich O,Litchfield D,Marber M,Salvi

    更新日期:2018-01-01 00:00:00

  • Mice deficient in the Vici syndrome gene Epg5 exhibit features of retinitis pigmentosa.

    abstract::Autophagy helps to maintain cellular homeostasis by removing misfolded proteins and damaged organelles, and generally acts as a cytoprotective mechanism for neuronal survival. Here we showed that mice deficient in the Vici syndrome gene Epg5, which is required for autophagosome maturation, show accumulation of ubiquit...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1238554

    authors: Miao G,Zhao YG,Zhao H,Ji C,Sun H,Chen Y,Zhang H

    更新日期:2016-12-01 00:00:00

  • LAMP2A as a therapeutic target in Parkinson disease.

    abstract::Abnormal aggregation of SNCA/?-synuclein plays a crucial role in Parkinson disease (PD) pathogenesis. SNCA levels determine its toxicity, and its accumulation, even to a small extent, may be a risk factor for neurodegeneration. One of the main pathways for SNCA degradation is chaperone-mediated autophagy (CMA), a sele...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26451

    authors: Xilouri M,Brekk OR,Kirik D,Stefanis L

    更新日期:2013-12-01 00:00:00

  • Critical role of autophage in ischemia/reperfusion injury to aged livers.

    abstract::A steady increase in life expectancy has resulted in an equivalent increase in elderly patients who are more susceptible to diseases than young patients. In a recent study, we found that in both in vitro and in vivo models of ischemia/reperfusion (I/R), a loss of ATG4B is causatively associated with the increased sens...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.8.1.18391

    authors: Wang JH,Behrns KE,Leeuwenburgh C,Kim JS

    更新日期:2012-01-01 00:00:00