Cocaine-mediated microglial activation involves the ER stress-autophagy axis.

Abstract:

:Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases.

journal_name

Autophagy

journal_title

Autophagy

authors

Guo ML,Liao K,Periyasamy P,Yang L,Cai Y,Callen SE,Buch S

doi

10.1080/15548627.2015.1052205

subject

Has Abstract

pub_date

2015-01-01 00:00:00

pages

995-1009

issue

7

eissn

1554-8627

issn

1554-8635

journal_volume

11

pub_type

杂志文章
  • NPC-phagy: selective autophagy of the nuclear pore complexes.

    abstract::Selective autophagy is critical for the regulation of cellular homeostasis in organisms from yeast to humans. This process is a specific degradation pathway for a wide variety of substrates including unwanted cytosolic components, such as protein aggregates, damaged and/or superfluous organelles, and pathogens. Howeve...

    journal_title:Autophagy

    pub_type: 社论

    doi:10.1080/15548627.2020.1798199

    authors: Yin Z,Klionsky DJ

    更新日期:2020-10-01 00:00:00

  • Manipulation of autophagy by MIR375 generates antitumor effects in liver cancer.

    abstract::The exploration into the roles of autophagy in tumorigenesis, either as tumor suppressor or tumor promoter, has led to a great increase in the knowledge of cancer development, progression and treatment. However, there is currently no consensus on how to manipulate autophagy to improve antitumor effects. In this study,...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.21796

    authors: Chang Y,Lin J,Tsung A

    更新日期:2012-12-01 00:00:00

  • ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding.

    abstract::Protein synthesis and autophagy work as two opposing processes to control cell growth in response to nutrient supply. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway, which acts as a master regulator to control protein synthesis, has recently been shown to inhibit autophagy by phosphorylating ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.7.15491

    authors: Dunlop EA,Hunt DK,Acosta-Jaquez HA,Fingar DC,Tee AR

    更新日期:2011-07-01 00:00:00

  • Autophagy and innate immunity: Insights from invertebrate model organisms.

    abstract::Macroautophagy/autophagy is a fundamental intracellular degradation process with multiple roles in immunity, including direct elimination of intracellular microorganisms via 'xenophagy.' In this review, we summarize studies from the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans that highlig...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.1080/15548627.2017.1389824

    authors: Kuo CJ,Hansen M,Troemel E

    更新日期:2018-01-01 00:00:00

  • RUBCN/rubicon and EGFR regulate lysosomal degradative processes in the retinal pigment epithelium (RPE) of the eye.

    abstract::Macroautophagy/autophagy is an intracellular stress survival and recycling system whereas phagocytosis internalizes material from the extracellular milieu; yet, both pathways utilize lysosomes for cargo degradation. Whereas autophagy occurs in all cells, phagocytosis is performed by cell types such as macrophages and ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1380124

    authors: Muniz-Feliciano L,Doggett TA,Zhou Z,Ferguson TA

    更新日期:2017-01-01 00:00:00

  • Atg14 protects the intestinal epithelium from TNF-triggered villus atrophy.

    abstract::Regulation of intestinal epithelial turnover is a key component of villus maintenance in the intestine. The balance of cell turnover can be perturbed by various extrinsic factors including the cytokine TNF, a cell signaling protein that mediates both proliferative and cytotoxic outcomes. Under conditions of infection ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1596495

    authors: Jung H,Leal-Ekman JS,Lu Q,Stappenbeck TS

    更新日期:2019-11-01 00:00:00

  • MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1.

    abstract::Hyperactivation of mechanistic target of rapamycin (MTOR) is a common feature of human cancers, and MTOR inhibitors, such as rapamycin, are thus becoming therapeutics in targeting certain cancers. However, rapamycin has also been found to compromise the efficacy of chemotherapeutics to cells with hyperactive MTOR. Her...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26447

    authors: Wang Y,Hu Z,Liu Z,Chen R,Peng H,Guo J,Chen X,Zhang H

    更新日期:2013-12-01 00:00:00

  • RAD001 (Everolimus) induces autophagy in acute lymphoblastic leukemia.

    abstract::The elimination of tumor cells by apoptosis is the main mechanism of action of chemotherapeutic drugs used in current treatment protocols of acute lymphoblastic leukemia (ALL). Despite the rapid cytoreduction achieved, serious acute and late complications are frequent, and resistance to chemotherapy develops. During t...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.5.8507

    authors: Crazzolara R,Bradstock KF,Bendall LJ

    更新日期:2009-07-01 00:00:00

  • How autophagy regulates the host cell signaling associated with the postpartum bacteria cocoon experienced as a danger signal.

    abstract::Shigella, the causative agent of human bacillary dysentery, invades the host cell, rapidly breaking the phagosome and multiplying in the cytosol. Here, we summarize our recent work showing the targeting of the leftover membrane remnants to autophagy together with trapped membrane-associated signaling molecules recruit...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.8.10218

    authors: Dupont N,Lafont F

    更新日期:2009-11-01 00:00:00

  • SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells.

    abstract::SPHK1 (sphingosine kinase 1), a regulator of sphingolipid metabolites, plays a causal role in the development of hepatocellular carcinoma (HCC) through augmenting HCC invasion and metastasis. However, the mechanism by which SPHK1 signaling promotes invasion and metastasis in HCC remains to be clarified. Here, we repor...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1291479

    authors: Liu H,Ma Y,He HW,Zhao WL,Shao RG

    更新日期:2017-05-04 00:00:00

  • Classical autophagy proteins LC3B and ATG4B facilitate melanosome movement on cytoskeletal tracks.

    abstract::Macroautophagy/autophagy is a dynamic and inducible catabolic process that responds to a variety of hormonal and environmental cues. Recent studies highlight the interplay of this central pathway in a variety of pathophysiological diseases. Although defective autophagy is implicated in melanocyte proliferation and pig...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1327509

    authors: Ramkumar A,Murthy D,Raja DA,Singh A,Krishnan A,Khanna S,Vats A,Thukral L,Sharma P,Sivasubbu S,Rani R,Natarajan VT,Gokhale RS

    更新日期:2017-08-03 00:00:00

  • Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila.

    abstract::Autophagy is involved with the turnover of intracellular components and the management of stress responses. Genetic studies in mice have shown that suppression of neuronal autophagy can lead to the accumulation of protein aggregates and neurodegeneration. However, no study has shown that increasing autophagic gene exp...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5269

    authors: Simonsen A,Cumming RC,Brech A,Isakson P,Schubert DR,Finley KD

    更新日期:2008-02-01 00:00:00

  • Multistep regulation of TFEB by MTORC1.

    abstract::The master regulator of lysosome biogenesis, TFEB, is regulated by MTORC1 through phosphorylation at S211, and a S211A mutation increases nuclear localization. However, TFEBS211A localizes diffusely in both cytoplasm and nucleus and, as we show, retains regulation by MTORC1. Here, we report that endogenous TFEB is pho...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1271514

    authors: Vega-Rubin-de-Celis S,Peña-Llopis S,Konda M,Brugarolas J

    更新日期:2017-03-04 00:00:00

  • Rph1 mediates the nutrient-limitation signaling pathway leading to transcriptional activation of autophagy.

    abstract::To maintain proper cellular homeostasis, the magnitude of autophagy activity has to be finely tuned in response to environmental changes. Many aspects of autophagy regulation have been extensively studied: pathways integrating signals through the master regulators TORC1 and PKA lead to multiple post-translational modi...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1018503

    authors: Bernard A,Klionsky DJ

    更新日期:2015-04-03 00:00:00

  • Autophagy and access: understanding the role of androgen receptor subcellular localization in SBMA.

    abstract::Ridding neurons of toxic misfolded proteins is a critical feature of many neurodegenerative diseases. We have recently reported that lack of access of nuclear polyglutamine-expanded androgen receptor (AR) to the autophagic degradation pathway is a critical point in pathogenesis. When mutant AR is contained within the ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.8.9726

    authors: Montie HL,Merry DE

    更新日期:2009-11-01 00:00:00

  • Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans.

    abstract::Autophagy is a conserved membrane trafficking pathway that mediates the delivery of cytoplasmic substrates to the lysosome for degradation. Impaired autophagic function is implicated in the pathology of various neurodegenerative diseases. We have generated transgenic C. elegans that express human beta-amyloid peptide ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.4776

    authors: Florez-McClure ML,Hohsfield LA,Fonte G,Bealor MT,Link CD

    更新日期:2007-11-01 00:00:00

  • Crosstalk between lysine methylation and phosphorylation of ATG16L1 dictates the apoptosis of hypoxia/reoxygenation-induced cardiomyocytes.

    abstract::Post-translational modifications of autophagy-related (ATG) genes are necessary to modulate their functions. However, ATG protein methylation and its physiological role have not yet been elucidated. The methylation of non-histone proteins by SETD7, a SET domain-containing lysine methyltransferase, is a novel regulator...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1389357

    authors: Song H,Feng X,Zhang M,Jin X,Xu X,Wang L,Ding X,Luo Y,Lin F,Wu Q,Liang G,Yu T,Liu Q,Zhang Z

    更新日期:2018-01-01 00:00:00

  • When more is less: excess and deficiency of autophagy coexist in skeletal muscle in Pompe disease.

    abstract::The role of autophagy, a catabolic lysosome-dependent pathway, has recently been recognized in a variety of disorders, including Pompe disease, which results from a deficiency of the glycogen-degrading lysosomal hydrolase acid-alpha glucosidase (GAA). Skeletal and cardiac muscle are most severely affected by the progr...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.1.7293

    authors: Raben N,Baum R,Schreiner C,Takikita S,Mizushima N,Ralston E,Plotz P

    更新日期:2009-01-01 00:00:00

  • ATG5 regulates plasma cell differentiation.

    abstract::Autophagy is a conserved homeostatic process in which cytoplasmic contents are degraded and recycled. Two ubiquitin-like conjugation pathways are required for the generation of autophagosomes, and ATG5 is necessary for both of these processes. Studies of mice deficient in ATG5 reveal a key role for autophagy in T lymp...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.23484

    authors: Conway KL,Kuballa P,Khor B,Zhang M,Shi HN,Virgin HW,Xavier RJ

    更新日期:2013-04-01 00:00:00

  • Dimethyl α-ketoglutarate inhibits maladaptive autophagy in pressure overload-induced cardiomyopathy.

    abstract::It has been a longstanding problem to identify specific and efficient pharmacological modulators of autophagy. Recently, we found that depletion of acetyl-coenzyme A (AcCoA) induced autophagic flux, while manipulations designed to increase cytosolic AcCoA efficiently inhibited autophagy. Thus, the cell permeant ester ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.28235

    authors: Mariño G,Pietrocola F,Kong Y,Eisenberg T,Hill JA,Madeo F,Kroemer G

    更新日期:2014-05-01 00:00:00

  • Autophagy targeting of Listeria monocytogenes and the bacterial countermeasure.

    abstract::Autophagy acts as an intrinsic defense system against intracellular bacterial survival. Recently, multiple cellular pathways that target intracellular bacterial pathogens to autophagy have been described. These include the Atg5/LC3 pathway, which targets Shigella, the ubiquitin (Ub)-NDP52-LC3 pathway, which targets Gr...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.7.3.14581

    authors: Ogawa M,Yoshikawa Y,Mimuro H,Hain T,Chakraborty T,Sasakawa C

    更新日期:2011-03-01 00:00:00

  • Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity.

    abstract::One of the major side effects of cisplatin chemotherapy is toxic acute kidney injury due to preferential accumulation of cisplatin in renal proximal tubule epithelial cells and the subsequent injury to these cells. Apoptosis is known as a major mechanism of cisplatin-induced cell death in renal tubular cells. We have ...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.6309

    authors: Kaushal GP,Kaushal V,Herzog C,Yang C

    更新日期:2008-07-01 00:00:00

  • STAT3 transcriptional factor activated by reactive oxygen species induces IL6 in starvation-induced autophagy of cancer cells.

    abstract::Autophagy is one of the survival processes of cancer cells, especially in stressful conditions such as starvation, hypoxia and chemotherapeutic agents. However, its roles in tumor survival have not yet been fully elucidated. Here, we found for the first time that JAK2/STAT3 was activated in HeLa cells when they were s...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.8.13547

    authors: Yoon S,Woo SU,Kang JH,Kim K,Kwon MH,Park S,Shin HJ,Gwak HS,Chwae YJ

    更新日期:2010-11-01 00:00:00

  • Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model.

    abstract::Innate immune defense against intracellular pathogens, like Salmonella, relies heavily on the autophagy machinery of the host. This response is studied intensively in epithelial cells, the target of Salmonella during gastrointestinal infections. However, little is known of the role that autophagy plays in macrophages,...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1569297

    authors: Masud S,Prajsnar TK,Torraca V,Lamers GEM,Benning M,Van Der Vaart M,Meijer AH

    更新日期:2019-05-01 00:00:00

  • Systemic regulation of autophagy in Caenorhabditis elegans.

    abstract::When no supply of environmental nutrients is available, cells induce autophagy, thereby generating a source of emergency metabolic substrates and energy to maintain the basal cellular activity needed for survival. This autophagy response to starvation has been well characterized in various multicellular organisms, inc...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.4.8171

    authors: Kang C,Avery L

    更新日期:2009-05-01 00:00:00

  • The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance.

    abstract::Loss-of-function mutations in PARK2/PARKIN and PINK1 cause early-onset autosomal recessive Parkinson disease (PD). The cytosolic E3 ubiquitin-protein ligase PARK2 cooperates with the mitochondrial kinase PINK1 to maintain mitochondrial quality. A loss of mitochondrial transmembrane potential (ΔΨ) leads to the PINK1-de...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.25884

    authors: Bertolin G,Ferrando-Miguel R,Jacoupy M,Traver S,Grenier K,Greene AW,Dauphin A,Waharte F,Bayot A,Salamero J,Lombès A,Bulteau AL,Fon EA,Brice A,Corti O

    更新日期:2013-11-01 00:00:00

  • Context effect: microRNA-10b in cancer cell proliferation, spread and death.

    abstract::Single microRNA (miRNA) can regulate expression of several or multiple principal targets in a specific microenvironment. In different cellular contexts, the same miRNA may exhibit diverse functions, depending on the repertoire and stoichiometry of its direct mRNA targets. For instance, in breast cancer, microRNA-10b (...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.11.17371

    authors: Gabriely G,Teplyuk NM,Krichevsky AM

    更新日期:2011-11-01 00:00:00

  • Implications of autophagy in anthrax pathogenicity.

    abstract::The etiological agent for anthrax is Bacillus anthracis, which produces lethal toxin (LT) that exerts a myriad of effects on many immune cells. In our previous study, it was demonstrated that LT and protective antigen (PA) induce autophagy in mammalian cells. Preliminary results suggest that autophagy may function as ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.5.8567

    authors: Tan YK,Vu HA,Kusuma CM,Wu A

    更新日期:2009-07-01 00:00:00

  • The "found-art vacuole"-people learn in different ways.

    abstract::Based on my reading, and on my own experience, I have come to realize that people learn in different ways, and this can include the use of different media. This is one reason I have worked with various artists to portray the topic of autophagy through paintings, music and dance. Indeed, comments from members of the au...

    journal_title:Autophagy

    pub_type: 评论,社论

    doi:10.1080/15548627.2019.1630225

    authors: Klionsky DJ

    更新日期:2019-09-01 00:00:00

  • Autophagy proteins are not universally required for phagosome maturation.

    abstract::Phagocytosis plays a central role in immunity and tissue homeostasis. After internalization of cargo into single-membrane phagosomes, these compartments undergo a maturation sequences that terminates in lysosome fusion and cargo degradation. Components of the autophagy pathway have recently been linked to phagosome ma...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1191724

    authors: Cemma M,Grinstein S,Brumell JH

    更新日期:2016-09-01 00:00:00