Implications of autophagy in anthrax pathogenicity.

Abstract:

:The etiological agent for anthrax is Bacillus anthracis, which produces lethal toxin (LT) that exerts a myriad of effects on many immune cells. In our previous study, it was demonstrated that LT and protective antigen (PA) induce autophagy in mammalian cells. Preliminary results suggest that autophagy may function as a cellular defense mechanism against LT-mediated toxemia. This degradation pathway may also be relevant to other aspects of the immune response in both innate and adaptive immunity. Understanding the role of autophagy in response to anthrax infection and the possibility of modulating this degradation pathway as potential countermeasures are subjects for further investigation.

journal_name

Autophagy

journal_title

Autophagy

authors

Tan YK,Vu HA,Kusuma CM,Wu A

doi

10.4161/auto.5.5.8567

subject

Has Abstract

pub_date

2009-07-01 00:00:00

pages

734-5

issue

5

eissn

1554-8627

issn

1554-8635

pii

8567

journal_volume

5

pub_type

杂志文章
  • Long noncoding RNA CA7-4 promotes autophagy and apoptosis via sponging MIR877-3P and MIR5680 in high glucose-induced vascular endothelial cells.

    abstract::Vascular endothelial cells (VECs) that form the inner wall of blood vessels can be injured by high glucose-induced autophagy and apoptosis. Although the role of long noncoding RNA in regulating cell fate has received widespread attention, long noncoding RNAs (lncRNAs) that can both regulate autophagy and apoptosis nee...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1598750

    authors: Zhao X,Su L,He X,Zhao B,Miao J

    更新日期:2020-01-01 00:00:00

  • A role for TOR complex 2 signaling in promoting autophagy.

    abstract::The conserved target of rapamycin (TOR) kinase is a central regulator of cell growth in response to nutrient availability. TOR forms 2 structurally and functionally distinct complexes, TORC1 and TORC2, and negatively regulates autophagy via TORC1. Here we demonstrate TOR also operates independently through the TORC2 s...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.36262

    authors: Vlahakis A,Powers T

    更新日期:2014-01-01 00:00:00

  • Mitochondrial quality control mediated by PINK1 and PRKN: links to iron metabolism and tumor immunity.

    abstract::Mitochondrial quality control is an essential process required to maintain cellular homeostasis and functions. Mutations of PINK1 and PRKN/PARK2 contribute to the risk of Parkinson disease. Our recent findings indicate that depletion of Pink1 and Prkn promotes pancreatic tumorigenesis in KRAS-driven engineered mouse m...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2018.1526611

    authors: Kang R,Xie Y,Zeh HJ,Klionsky DJ,Tang D

    更新日期:2019-01-01 00:00:00

  • ATM loss disrupts the autophagy-lysosomal pathway.

    abstract::ATM (ataxia telangiectasia mutated) protein is found associated with multiple organelles including synaptic vesicles, endosomes and lysosomes, often in cooperation with ATR (ataxia telangiectasia and Rad3 related). Mutation of the ATM gene results in ataxia-telangiectasia (A-T), an autosomal recessive disorder with de...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1805860

    authors: Cheng A,Tse KH,Chow HM,Gan Y,Song X,Ma F,Qian YXY,She W,Herrup K

    更新日期:2020-08-14 00:00:00

  • Classical autophagy proteins LC3B and ATG4B facilitate melanosome movement on cytoskeletal tracks.

    abstract::Macroautophagy/autophagy is a dynamic and inducible catabolic process that responds to a variety of hormonal and environmental cues. Recent studies highlight the interplay of this central pathway in a variety of pathophysiological diseases. Although defective autophagy is implicated in melanocyte proliferation and pig...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1327509

    authors: Ramkumar A,Murthy D,Raja DA,Singh A,Krishnan A,Khanna S,Vats A,Thukral L,Sharma P,Sivasubbu S,Rani R,Natarajan VT,Gokhale RS

    更新日期:2017-08-03 00:00:00

  • Friend or food: different cues to the autophagosomal proteome.

    abstract::A hallmark of macroautophagy is the formation of autophagosomes, double-membrane vesicles that enwrap cellular components destined for lysosomal degradation. We examined autophagosomal protein dynamics under various inducing stimuli using a comprehensive mass spectrometry-based proteomics approach in combination with ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.20286

    authors: Becker AC,Bunkenborg J,Eisenberg T,Harder LM,Schroeder S,Madeo F,Andersen JS,Dengjel J

    更新日期:2012-06-01 00:00:00

  • Artophagy: the art of autophagy--the Cvt pathway.

    abstract::Science informs art, and art informs science. Both processes involve creativity and imagination, and collaboration between scientists and artists often leads to new insights in both fields. We took advantage of the power of artistic imagery to demonstrate a dynamic cellular process, autophagy. In particular, we depict...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.1.10812

    authors: Goodsell DS,Klionsky DJ

    更新日期:2010-01-01 00:00:00

  • A second report from the EMBO conference on autophagy: mechanism, regulation and selectivity of autophagy.

    abstract::Some key questions being examined in the field of autophagy concern the origin of the membrane that forms the sequestering vesicle, the function of the related machinery, including the identification of new components and binding partners of previously identified autophagy-related proteins and the mechanism of autopha...

    journal_title:Autophagy

    pub_type:

    doi:10.4161/auto.6.1.10819

    authors: Vellai T,Klionsky DJ

    更新日期:2010-01-01 00:00:00

  • Systemic regulation of autophagy in Caenorhabditis elegans.

    abstract::When no supply of environmental nutrients is available, cells induce autophagy, thereby generating a source of emergency metabolic substrates and energy to maintain the basal cellular activity needed for survival. This autophagy response to starvation has been well characterized in various multicellular organisms, inc...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.4.8171

    authors: Kang C,Avery L

    更新日期:2009-05-01 00:00:00

  • Critical role of autophage in ischemia/reperfusion injury to aged livers.

    abstract::A steady increase in life expectancy has resulted in an equivalent increase in elderly patients who are more susceptible to diseases than young patients. In a recent study, we found that in both in vitro and in vivo models of ischemia/reperfusion (I/R), a loss of ATG4B is causatively associated with the increased sens...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.8.1.18391

    authors: Wang JH,Behrns KE,Leeuwenburgh C,Kim JS

    更新日期:2012-01-01 00:00:00

  • Autophagic degradation of SQSTM1 inhibits ovarian cancer motility by decreasing DICER1 and AGO2 to induce MIRLET7A-3P.

    abstract::The relationship between macroautophagy/autophagy and miRNA in regulating cancer cell motility is not clearly delineated. Here, we found that induction of BECN1-dependent or -independent autophagy decreased ubiquitin-binding proteins SQSTM1/p62 and CALCOCO2/NDP52. Downregulation of SQSTM1 (but not CALCOCO2) led to a d...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1501135

    authors: Liao CC,Ho MY,Liang SM,Liang CM

    更新日期:2018-01-01 00:00:00

  • Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway.

    abstract::Alzheimer disease (AD) is usually accompanied by two prominent pathological features, cerebral accumulation of amyloid-β (Aβ) plaques and presence of MAPT/tau neurofibrillary tangles. Dysregulated clearance of Aβ largely contributes to its accumulation and plaque formation in the brain. Macroautophagy/autophagy is a l...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2021.1872187

    authors: Wani A,Al Rihani SB,Sharma A,Weadick B,Govindarajan R,Khan SU,Sharma PR,Dogra A,Nandi U,Reddy CN,Bharate SS,Singh G,Bharate SB,Vishwakarma RA,Kaddoumi A,Kumar A

    更新日期:2021-01-19 00:00:00

  • ATG5 regulates plasma cell differentiation.

    abstract::Autophagy is a conserved homeostatic process in which cytoplasmic contents are degraded and recycled. Two ubiquitin-like conjugation pathways are required for the generation of autophagosomes, and ATG5 is necessary for both of these processes. Studies of mice deficient in ATG5 reveal a key role for autophagy in T lymp...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.23484

    authors: Conway KL,Kuballa P,Khor B,Zhang M,Shi HN,Virgin HW,Xavier RJ

    更新日期:2013-04-01 00:00:00

  • Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL1 via LIR motifs.

    abstract::Autophagosome formation depends on a carefully orchestrated interplay between membrane-associated protein complexes. Initiation of macroautophagy/autophagy is mediated by the ULK1 (unc-51 like autophagy activating kinase 1) protein kinase complex and the autophagy-specific class III phosphatidylinositol 3-kinase compl...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1581009

    authors: Birgisdottir ÅB,Mouilleron S,Bhujabal Z,Wirth M,Sjøttem E,Evjen G,Zhang W,Lee R,O'Reilly N,Tooze SA,Lamark T,Johansen T

    更新日期:2019-08-01 00:00:00

  • Cell-autonomous, paracrine and neuroendocrine feedback regulation of autophagy by DBI/ACBP (diazepam binding inhibitor, acyl-CoA binding protein): the obesity factor.

    abstract::DBI/ACBP (diazepam binding protein, acyl-CoA binding protein) participates in the regulation of fatty acid metabolism when it is localized within cells, whereas outside of cells it acts as a diazepam-binding protein. Recent results indicate that many different mammalian cell types release DBI/ACBP upon in vitro or in ...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2019.1662585

    authors: Bravo-San Pedro JM,Sica V,Martins I,Anagnostopoulos G,Maiuri C,Kroemer G

    更新日期:2019-11-01 00:00:00

  • microRNA 30A promotes autophagy in response to cancer therapy.

    abstract::microRNAs (miRNAs) are a class of small regulatory RNAs that regulate gene expression at the post-transcriptional level. miRNAs play important roles in the regulation of development, growth, and metastasis of cancer, and in determining the response of tumor cells to anticancer therapy. In recent years, they have also ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.20053

    authors: Yu Y,Cao L,Yang L,Kang R,Lotze M,Tang D

    更新日期:2012-05-01 00:00:00

  • A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases.

    abstract::Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons. As with other age-dependent neurodegenerative disorders, ALS is linked to the presence of misfolded proteins that may perturb several intracellular mechanisms and trigger neu...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.7.13042

    authors: Crippa V,Carra S,Rusmini P,Sau D,Bolzoni E,Bendotti C,De Biasi S,Poletti A

    更新日期:2010-10-01 00:00:00

  • The Thr300Ala variant of ATG16L1 is associated with decreased risk of brain metastasis in patients with non-small cell lung cancer.

    abstract::Non-small cell lung cancer (NSCLC) often metastasizes to the brain, but identifying which patients will develop brain metastases (BM) is difficult. Macroautophagy/autophagy is critical for cancer initiation and progression. We hypothesized that genetic variants of autophagy-related genes may affect brain metastases (B...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1308997

    authors: Li QX,Zhou X,Huang TT,Tang Y,Liu B,Peng P,Sun L,Wang YH,Yuan XL

    更新日期:2017-06-03 00:00:00

  • The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins.

    abstract::The N-terminal amino acid of a protein is an essential determinant of ubiquitination and subsequent proteasomal degradation in the N-end rule pathway. Using para-chloroamphetamine (PCA), a specific inhibitor of the arginylation branch of the pathway (Arg/N-end rule pathway), we identified that blocking the Arg/N-end r...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1222991

    authors: Jiang Y,Lee J,Lee JH,Lee JW,Kim JH,Choi WH,Yoo YD,Cha-Molstad H,Kim BY,Kwon YT,Noh SA,Kim KP,Lee MJ

    更新日期:2016-11-01 00:00:00

  • Autophagy controls neonatal myogenesis by regulating the GH-IGF1 system through a NFE2L2- and DDIT3-mediated mechanism.

    abstract::Macroautophagy/autophagy is emerging as an important process in adult muscle stem cells functions: it regulates metabolic reprogramming during activation from a quiescent state, maintains stemness and prevents senescence. We now show that autophagy is specifically required for neonatal myogenesis and muscle developmen...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1507439

    authors: Zecchini S,Giovarelli M,Perrotta C,Morisi F,Touvier T,Di Renzo I,Moscheni C,Bassi MT,Cervia D,Sandri M,Clementi E,De Palma C

    更新日期:2019-01-01 00:00:00

  • SIRT5 regulation of ammonia-induced autophagy and mitophagy.

    abstract::In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved i...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1009778

    authors: Polletta L,Vernucci E,Carnevale I,Arcangeli T,Rotili D,Palmerio S,Steegborn C,Nowak T,Schutkowski M,Pellegrini L,Sansone L,Villanova L,Runci A,Pucci B,Morgante E,Fini M,Mai A,Russo MA,Tafani M

    更新日期:2015-01-01 00:00:00

  • Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease.

    abstract::The precise degradation of dysfunctional mitochondria by mitophagy is essential for maintaining neuronal homeostasis. HTT (huntingtin) can interact with numerous other proteins and thereby perform multiple biological functions within the cell. In this study, we investigated the role of HTT during mitophagy and analyze...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1728096

    authors: Franco-Iborra S,Plaza-Zabala A,Montpeyo M,Sebastian D,Vila M,Martinez-Vicente M

    更新日期:2020-02-24 00:00:00

  • The functions of Atg8-family proteins in autophagy and cancer: linked or unrelated?

    abstract::The Atg8-family proteins are subdivided into two subfamilies: the GABARAP and LC3 subfamilies. These proteins, which are major players of the autophagy pathway, present a conserved glycine in their C-terminus necessary for their association to the autophagosome membrane. This family of proteins present multiple roles ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1749367

    authors: Jacquet M,Guittaut M,Fraichard A,Despouy G

    更新日期:2020-04-19 00:00:00

  • The MTOR signaling pathway regulates macrophage differentiation from mouse myeloid progenitors by inhibiting autophagy.

    abstract::Understanding of the mechanism for myeloid differentiation provides important insights into the hematopoietic developmental processes. By using an ESC-derived myeloid progenitor cell model, we found that CSF2/GM-CSF triggered macrophage differentiation and activation of the MTOR signaling pathway. Activation or inhibi...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1578040

    authors: Zhang M,Liu F,Zhou P,Wang Q,Xu C,Li Y,Bian L,Liu Y,Zhou J,Wang F,Yao Y,Fang Y,Li D

    更新日期:2019-07-01 00:00:00

  • Assessing autophagy in the context of photodynamic therapy.

    abstract::Photodynamic therapy (PDT) is a procedure that has applications in the selective eradication of neoplasia where sites of malignant lesions are clearly delineated. It is a two-step process whereby cells are first sensitized to light and then photoirradiated. This results in the formation of singlet molecular oxygen and...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.6.1.10220

    authors: Reiners JJ Jr,Agostinis P,Berg K,Oleinick NL,Kessel D

    更新日期:2010-01-01 00:00:00

  • Driving next-generation autophagy researchers towards translation (DRIVE), an international PhD training program on autophagy.

    abstract::The European autophagy consortium Driving next-generation autophagy researchers towards translation (DRIVE) held its kick-off meeting in Groningen on the 14th and 15th of June 2018. This Marie Skłodowska-Curie Early Training Network was approved under the European Union's Horizon 2020 Research and Innovation Program a...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1515532

    authors: Kraft C,Boya P,Codogno P,Elazar Z,Eskelinen EL,Farrés J,Kirkin V,Jungbluth H,Martinez A,Pless O,Primard C,Proikas-Cezanne T,Simonsen A,Reggiori F

    更新日期:2019-02-01 00:00:00

  • Role of actin in shaping autophagosomes.

    abstract::One of the main unanswered questions regarding the early steps of macroautophagy/autophagy is the mechanism of membrane-modeling events required for autophagosome formation. Three independent studies have recently revealed an actin cytoskeleton involvement in this process, providing significant details regarding the r...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1236877

    authors: Zientara-Rytter K,Subramani S

    更新日期:2016-12-01 00:00:00

  • SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells.

    abstract::SPHK1 (sphingosine kinase 1), a regulator of sphingolipid metabolites, plays a causal role in the development of hepatocellular carcinoma (HCC) through augmenting HCC invasion and metastasis. However, the mechanism by which SPHK1 signaling promotes invasion and metastasis in HCC remains to be clarified. Here, we repor...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1291479

    authors: Liu H,Ma Y,He HW,Zhao WL,Shao RG

    更新日期:2017-05-04 00:00:00

  • Recycling endosomes contribute to autophagosome formation.

    abstract::Autophagosome formation is a complex cellular process, which requires major membrane rearrangements leading to the creation of a relatively large double-membrane vesicle that directs its contents to the lysosome for degradation. Although various membrane compartments have been identified as sources for autophagosomal ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.21486

    authors: Longatti A,Tooze SA

    更新日期:2012-11-01 00:00:00

  • Mice deficient in the Vici syndrome gene Epg5 exhibit features of retinitis pigmentosa.

    abstract::Autophagy helps to maintain cellular homeostasis by removing misfolded proteins and damaged organelles, and generally acts as a cytoprotective mechanism for neuronal survival. Here we showed that mice deficient in the Vici syndrome gene Epg5, which is required for autophagosome maturation, show accumulation of ubiquit...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1238554

    authors: Miao G,Zhao YG,Zhao H,Ji C,Sun H,Chen Y,Zhang H

    更新日期:2016-12-01 00:00:00