Rph1 mediates the nutrient-limitation signaling pathway leading to transcriptional activation of autophagy.

Abstract:

:To maintain proper cellular homeostasis, the magnitude of autophagy activity has to be finely tuned in response to environmental changes. Many aspects of autophagy regulation have been extensively studied: pathways integrating signals through the master regulators TORC1 and PKA lead to multiple post-translational modifications affecting the functions, protein-protein interactions, and localization of Atg proteins. The expression of several ATG genes increases sharply upon autophagy induction conditions, and defects in ATG gene expression are associated with various diseases, pointing to the importance of transcriptional regulation of autophagy. Yet, how changes in ATG gene expression affect the rate of autophagy is not well characterized, and transcriptional regulators of the autophagy pathway remain largely unknown. To identify such regulators, we analyzed the expression of several ATG genes in a library of DNA-binding protein mutants. This led to the identification of Rph1 as a master transcriptional regulator of autophagy.

journal_name

Autophagy

journal_title

Autophagy

authors

Bernard A,Klionsky DJ

doi

10.1080/15548627.2015.1018503

subject

Has Abstract

pub_date

2015-04-03 00:00:00

pages

718-9

issue

4

eissn

1554-8627

issn

1554-8635

journal_volume

11

pub_type

杂志文章
  • Autophagy and access: understanding the role of androgen receptor subcellular localization in SBMA.

    abstract::Ridding neurons of toxic misfolded proteins is a critical feature of many neurodegenerative diseases. We have recently reported that lack of access of nuclear polyglutamine-expanded androgen receptor (AR) to the autophagic degradation pathway is a critical point in pathogenesis. When mutant AR is contained within the ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.8.9726

    authors: Montie HL,Merry DE

    更新日期:2009-11-01 00:00:00

  • UVRAG: at the crossroad of autophagy and genomic stability.

    abstract::UVRAG is a promoter of the autophagy pathway, and its deficiency may fuel the development of cancers. Intriguingly, our recent study has demonstrated that this protein also mediates the repair of damaged DNA and patrols centrosome stability, mechanisms that commonly prevent cancer progression, in a manner independent ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.21035

    authors: Zhao Z,Ni D,Ghozalli I,Pirooz SD,Ma B,Liang C

    更新日期:2012-09-01 00:00:00

  • The role of MTMR14 in autophagy and in muscle disease.

    abstract::Phosphoinositides (PIs) are a group of low-abundance phospholipids that play a critical role in the control of organelle and membrane traffic. There is strong evidence that specific PIs are also important for the regulation of autophagy. PIs are modified by a complex network of lipid kinases and phosphatases. A recent...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.6.12624

    authors: Gibbs EM,Feldman EL,Dowling JJ

    更新日期:2010-08-01 00:00:00

  • Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment.

    abstract::SNCA/α-synuclein aggregation plays a crucial role in synucleinopathies such as Parkinson disease and dementia with Lewy bodies. Aggregating and nonaggregating SNCA species are degraded by the autophagy-lysosomal pathway (ALP). Previously, we have shown that the ALP is not only responsible for SNCA degradation but is a...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.36436

    authors: Poehler AM,Xiang W,Spitzer P,May VE,Meixner H,Rockenstein E,Chutna O,Outeiro TF,Winkler J,Masliah E,Klucken J

    更新日期:2014-01-01 00:00:00

  • Autophagy: The missing link between non-enzymatically glycated proteins inducing apoptosis and premature senescence of endothelial cells?

    abstract::In a series of studies into the fate of endothelial cells exposed to non-enzymatically glycated collagen I, a model of cytotoxic molecules relevant to diabetic vasculopathy, we demonstrate that cells either undergo apoptosis or become prematurely senescent despite relatively spared telomeres and telomerase activity. O...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5904

    authors: Patschan S,Goligorsky MS

    更新日期:2008-05-01 00:00:00

  • MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1.

    abstract::Hyperactivation of mechanistic target of rapamycin (MTOR) is a common feature of human cancers, and MTOR inhibitors, such as rapamycin, are thus becoming therapeutics in targeting certain cancers. However, rapamycin has also been found to compromise the efficacy of chemotherapeutics to cells with hyperactive MTOR. Her...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26447

    authors: Wang Y,Hu Z,Liu Z,Chen R,Peng H,Guo J,Chen X,Zhang H

    更新日期:2013-12-01 00:00:00

  • The COP9 signalosome coerces autophagy and the ubiquitin-proteasome system to police the heart.

    abstract::We demonstrated for the first time that the COP9 signalosome (COPS) controls the degradation of a surrogate and a bona fide misfolded protein in the cytosol of cardiomyocytes likely via supporting ubiquitination by CUL/cullin-RING ligases, and that Cops8 hypomorphism exacerbates cardiac proteinopathy in mice, in which...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1136773

    authors: Liu J,Su H,Wang X

    更新日期:2016-01-01 00:00:00

  • HIF1A Alleviates compression-induced apoptosis of nucleus pulposus derived stem cells via upregulating autophagy.

    abstract::Intervertebral disc degeneration (IDD) is the primary pathological mechanism that underlies low back pain. Overloading-induced cell death, especially endogenous stem cell death, is the leading factor that undermines intrinsic repair and aggravates IDD. Previous research has separately studied the effect of oxygen conc...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2021.1872227

    authors: He R,Wang Z,Cui M,Liu S,Wu W,Chen M,Wu Y,Qu Y,Lin H,Chen S,Wang B,Shao Z

    更新日期:2021-01-18 00:00:00

  • Vitamin D improves sunburns by increasing autophagy in M2 macrophages.

    abstract::Cutaneous inflammation from UV radiation exposure causes epidermal damage, cellular infiltration, and secretion of pro-inflammatory mediators that exacerbate tissue destruction. Recovery is mediated chiefly by anti-inflammatory M2 macrophages that suppress inflammation and augment epidermal regeneration. Vitamin D ena...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1569298

    authors: Das LM,Binko AM,Traylor ZP,Peng H,Lu KQ

    更新日期:2019-05-01 00:00:00

  • Regulation of autophagy by extracellular matrix glycoproteins in HeLa cells.

    abstract::Macroautophagy is a major lysosomal degradation pathway for cellular components in eukaryotic cells. Baseline macroautophagy is important for quality control of the cytoplasm in order to avoid the accumulation of cytotoxic products. Its stimulation by various stressful situations, including nutrient starvation, is imp...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.1.13851

    authors: Tuloup-Minguez V,Greffard A,Codogno P,Botti J

    更新日期:2011-01-01 00:00:00

  • Autosomal dominant retinitis pigmentosa-associated gene PRPF8 is essential for hypoxia-induced mitophagy through regulating ULK1 mRNA splicing.

    abstract::Aged and damaged mitochondria can be selectively degraded by specific autophagic elimination, termed mitophagy. Defects in mitophagy have been increasingly linked to several diseases including neurodegenerative diseases, metabolic diseases and other aging-related diseases. However, the molecular mechanisms of mitophag...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1501251

    authors: Xu G,Li T,Chen J,Li C,Zhao H,Yao C,Dong H,Wen K,Wang K,Zhao J,Xia Q,Zhou T,Zhang H,Gao P,Li A,Pan X

    更新日期:2018-01-01 00:00:00

  • Chaperone-mediated autophagy: the heretofore untold story of J. Fred "Paulo" Dice. Interview by Daniel J. Klionsky.

    abstract::The best-characterized process of autophagy is macroautophagy. Many an article or talk has started with the phrase "...macroautophagy, hereafter referred to as autophagy." This one will be different because we are going to learn more about the person most responsible for increasing our understanding of chaperone-media...

    journal_title:Autophagy

    pub_type: 传,历史文章,杂志文章

    doi:10.4161/auto.5.8.9476

    authors: Dice JF

    更新日期:2009-11-01 00:00:00

  • Autophagy targeting of Listeria monocytogenes and the bacterial countermeasure.

    abstract::Autophagy acts as an intrinsic defense system against intracellular bacterial survival. Recently, multiple cellular pathways that target intracellular bacterial pathogens to autophagy have been described. These include the Atg5/LC3 pathway, which targets Shigella, the ubiquitin (Ub)-NDP52-LC3 pathway, which targets Gr...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.7.3.14581

    authors: Ogawa M,Yoshikawa Y,Mimuro H,Hain T,Chakraborty T,Sasakawa C

    更新日期:2011-03-01 00:00:00

  • ER-phagy: selective autophagy of the endoplasmic reticulum.

    abstract::Throughout their life, cells must maintain homeostasis while facing constantly fluctuating demands on their different organelles. A major mechanism for the homeostatic control of organelle function is the unfolded protein response (UPR), a signaling pathway that triggers a comprehensive remodeling of the endoplasmic r...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.3930

    authors: Bernales S,Schuck S,Walter P

    更新日期:2007-05-01 00:00:00

  • Macroautophagy-dependent, intralysosomal cleavage of a betaine homocysteine methyltransferase fusion protein requires stable multimerization.

    abstract::Cargo-based assays have proven invaluable in the study of macroautophagy in yeast and mammalian cells. Proteomic analysis of autolysosomes identified the metabolic enzyme, betaine homocysteine methyltransferase (BHMT), as a potential cargo-based, end-point marker for mammalian macroautophagy. To test whether degradati...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5275

    authors: Mercer CA,Kaliappan A,Dennis PB

    更新日期:2008-02-01 00:00:00

  • An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity.

    abstract::The ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are the two most important components of cellular mechanisms for protein degradation. In the present study we investigated the functional relationship of the two systems and the interactional role of p53 in vitro. Our study showed that the...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.5.8377

    authors: Du Y,Yang D,Li L,Luo G,Li T,Fan X,Wang Q,Zhang X,Wang Y,Le W

    更新日期:2009-07-01 00:00:00

  • Processing of autophagic protein LC3 by the 20S proteasome.

    abstract::Ubiquitin-proteasome system and autophagy are the two major mechanisms for protein degradation in eukaryotic cells. LC3, a ubiquitin-like protein, plays an essential role in autophagy through its ability to be conjugated to phosphatidylethanolamine. In this study, we discovered a novel LC3-processing activity, and bio...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.1.10928

    authors: Gao Z,Gammoh N,Wong PM,Erdjument-Bromage H,Tempst P,Jiang X

    更新日期:2010-01-01 00:00:00

  • The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan.

    abstract::The AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by sensing the metabolic status of the cell. AMPK is regulated by phosphorylation and dephosphorylation as a result of changing AMP/ATP levels and by removal of inhibitory ubiquitin residues by USP10. In this context, we identified the GID-c...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1695399

    authors: Liu H,Ding J,Köhnlein K,Urban N,Ori A,Villavicencio-Lorini P,Walentek P,Klotz LO,Hollemann T,Pfirrmann T

    更新日期:2020-09-01 00:00:00

  • Autophagy, Inflammation, and Metabolism (AIM) Center in its second year.

    abstract::The NIH-funded center for autophagy research named Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center is now completing its second year as a working center with a mission to promote autophagy research locally, nationally...

    journal_title:Autophagy

    pub_type: 历史文章,杂志文章

    doi:10.1080/15548627.2019.1634444

    authors: Deretic V,Prossnitz E,Burge M,Campen MJ,Cannon J,Liu KJ,Liu M,Hall P,Sklar LA,Allers L,Mariscal L,Garcia SA,Weaver J,Baehrecke EH,Behrends C,Cecconi F,Codogno P,Chen GC,Elazar Z,Eskelinen EL,Fourie B,Gozuacik D

    更新日期:2019-10-01 00:00:00

  • Mitochondrial elongation during autophagy: a stereotypical response to survive in difficult times.

    abstract::Mitochondrial morphological and structural changes play a role in several cellular processes, including apoptosis. We recently reported that mitochondrial elongation is also critical to sustain cell viability during macroautophagy. During macroautophagy unopposed mitochondrial fusion leads to organelle elongation both...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.10.16771

    authors: Gomes LC,Scorrano L

    更新日期:2011-10-01 00:00:00

  • Autophagy protects neuron from Abeta-induced cytotoxicity.

    abstract::Autophagy is a degradation pathway for the turnover of dysfunctional organelles or aggregated proteins in cells. Extracellular accumulation of beta-amyloid peptide has been reported to be a major cause of Alzheimer disease (AD) and large numbers of autophagic vacuoles accumulate in the brain of AD patient. However, ho...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.4.8096

    authors: Hung SY,Huang WP,Liou HC,Fu WM

    更新日期:2009-05-01 00:00:00

  • Identification of the autophagy pathway in a mollusk bivalve, Crassostrea gigas.

    abstract::The Pacific oyster, Crassostrea gigas, is a mollusk bivalve commercially important as a food source. Pacific oysters are subjected to stress and diseases during culture. The autophagy pathway is involved in numerous cellular processes, including responses to starvation, cell death, and microorganism elimination. Autop...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1713643

    authors: Picot S,Faury N,Arzul I,Chollet B,Renault T,Morga B

    更新日期:2020-11-01 00:00:00

  • Guidelines for the use and interpretation of assays for monitoring autophagy.

    abstract::In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update the...

    journal_title:Autophagy

    pub_type: 指南,杂志文章

    doi:10.4161/auto.19496

    authors: Klionsky DJ,Abdalla FC,Abeliovich H,Abraham RT,Acevedo-Arozena A,Adeli K,Agholme L,Agnello M,Agostinis P,Aguirre-Ghiso JA,Ahn HJ,Ait-Mohamed O,Ait-Si-Ali S,Akematsu T,Akira S,Al-Younes HM,Al-Zeer MA,Albert ML,Albin RL

    更新日期:2012-04-01 00:00:00

  • Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF.

    abstract::Recent evidence suggests that autophagy may favor fibrosis through enhanced differentiation of fibroblasts in myofibroblasts. Here, we sought to characterize the mediators and signaling pathways implicated in autophagy-induced myofibroblast differentiation. Fibroblasts, serum starved for up to 4 d, showed increased LC...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/15548627.2014.981786

    authors: Bernard M,Dieudé M,Yang B,Hamelin K,Underwood K,Hébert MJ

    更新日期:2014-01-01 00:00:00

  • Radiation-induced autophagy in normal and cancer cells: towards novel cytoprotection and radio-sensitization policies?

    abstract::Autophagy or Type II programmed cell death (PCD) is a major intracellular pathway for the degradation and recycling of proteins, ribosomes and entire organelles. The role of this pathway in the antitumor effect of radiotherapy and in radiation toxicity is obscure. A complicated machinery of genes and proteins is invol...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.5.4.7667

    authors: Zois CE,Koukourakis MI

    更新日期:2009-05-01 00:00:00

  • Disease relevance of phosphorylated ubiquitin (p-S65-Ub).

    abstract::Here, we present a summary of our recent findings on the (patho-)physiological relevance of PINK1-phosphorylated ubiquitin (p-S65-Ub). Using novel polyclonal antibodies, we find that p-S65-Ub specifically accumulates on damaged mitochondria. Phosphorylation of ubiquitin on serine 65 depends on the activity of PINK1 an...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1091912

    authors: Fiesel FC,Springer W

    更新日期:2015-11-02 00:00:00

  • Autophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart failure predict improved prognosis.

    abstract::Autophagy is a process of bulk protein degradation and organelle turnover, and is a current therapeutic target in several diseases. The present study aimed to clarify the significance of myocardial autophagy of patients with dilated cardiomyopathy (DCM). Left ventricular endomyocardial biopsy was performed in 250 cons...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1145326

    authors: Saito T,Asai K,Sato S,Hayashi M,Adachi A,Sasaki Y,Takano H,Mizuno K,Shimizu W

    更新日期:2016-01-01 00:00:00

  • Autophagy-preferential degradation of MIR224 participates in hepatocellular carcinoma tumorigenesis.

    abstract::Autophagy and microRNA (miRNA) are important regulators during cancer cell tumorigenesis. Impaired autophagy and high expression of the oncogenic microRNA MIR224 are prevalent in hepatocellular carcinoma (HCC); however, the relationship between the 2 phenomena remains elusive. In this study, we are the first to reveal...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.29959

    authors: Lan SH,Wu SY,Zuchini R,Lin XZ,Su IJ,Tsai TF,Lin YJ,Wu CT,Liu HS

    更新日期:2014-09-01 00:00:00

  • Cytoprotective and nonprotective autophagy in cancer therapy.

    abstract::Two primary forms of autophagy have been identified in the field of cancer therapy based on their apparent functions in the tumor cell; these are the cytoprotective form that could, in theory, be inhibited for the purpose of sensitization to radiation and chemotherapeutic drugs and the "cytotoxic" form that either med...

    journal_title:Autophagy

    pub_type: 社论

    doi:10.4161/auto.25233

    authors: Gewirtz DA

    更新日期:2013-09-01 00:00:00

  • Autophagy: a new player in hepatic stellate cell activation.

    abstract::Hepatic stellate cell (HSC) activation, the transition from a resident quiescent HSC to a myofibroblastic collagen-producing HSC, is a fundamental feature of liver fibrosis. Autophagy has been implicated in major liver pathologies, such as HCV infection and hepatocarcinoma. However, its role in HSC biology is largely ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.8.1.18105

    authors: Thoen LF,Guimarães EL,Grunsven LA

    更新日期:2012-01-01 00:00:00