Autophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart failure predict improved prognosis.

Abstract:

:Autophagy is a process of bulk protein degradation and organelle turnover, and is a current therapeutic target in several diseases. The present study aimed to clarify the significance of myocardial autophagy of patients with dilated cardiomyopathy (DCM). Left ventricular endomyocardial biopsy was performed in 250 consecutive patients with DCM (54.9±13.9 years; male, 79%), initially presenting with decompensated heart failure (HF). The association of these findings with HF mortality or recurrence was examined. Myofilament changes, which are apparent in the degenerated cardiomyocytes of DCM, were recognized in 164 patients (66%), and autophagic vacuoles in cardiomyocytes were identified in or near the area of myofilament changes in 86 patients (34%). Morphometrically, fibrosis (odds ratio [OR], 0.96; 95% confidence interval [CI], 0.93 to 0.99) and mitochondrial abnormality (OR, 2.24; 95% CI, 1.23 to 4.08) were independently related with autophagic vacuoles. During the follow-up period of 4.9±3.9 y, 24 patients (10%) died, including 10 (4%) who died of HF, and 67 (27%) were readmitted for HF recurrence. Multivariate analysis identified a family history of DCM (hazard ratio [HR], 2.117; 95% CI, 1.199 to 3.738), hemoglobin level (HR, 0.845; 95% CI, 0.749 to 0.953), myofilament changes (HR, 13.525; 95% CI, 5.340 to 34.255), and autophagic vacuoles (HR, 0.214; 95% CI, 0.114 to 0.400) as independent predictors of death or readmission due to HF recurrence. In conclusion, autophagic vacuoles in cardiomyocytes are associated with a better HF prognosis in patients with DCM, suggesting autophagy may play a role in the prevention of myocardial degeneration.

journal_name

Autophagy

journal_title

Autophagy

authors

Saito T,Asai K,Sato S,Hayashi M,Adachi A,Sasaki Y,Takano H,Mizuno K,Shimizu W

doi

10.1080/15548627.2016.1145326

subject

Has Abstract

pub_date

2016-01-01 00:00:00

pages

579-87

issue

3

eissn

1554-8627

issn

1554-8635

journal_volume

12

pub_type

杂志文章
  • Role for nanomaterial-autophagy interaction in neurodegenerative disease.

    abstract::Nanotechnology is the control and manipulation of materials in the size range of 1-100 nm. Due to increasing research into the potential beneficial applications of nanotechnology, there is an urgent need for the study of possible health risks. Several researchers, including those in our laboratory, have demonstrated e...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7142

    authors: Stern ST,Johnson DN

    更新日期:2008-11-01 00:00:00

  • UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy.

    abstract::The islet in type 2 diabetes mellitus (T2DM) is characterized by a deficit in β-cells and increased β-cell apoptosis attributable at least in part to intracellular toxic oligomers of IAPP (islet amyloid polypeptide). β-cells of individuals with T2DM are also characterized by accumulation of polyubiquitinated proteins ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.28478

    authors: Costes S,Gurlo T,Rivera JF,Butler PC

    更新日期:2014-06-01 00:00:00

  • MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1.

    abstract::Hyperactivation of mechanistic target of rapamycin (MTOR) is a common feature of human cancers, and MTOR inhibitors, such as rapamycin, are thus becoming therapeutics in targeting certain cancers. However, rapamycin has also been found to compromise the efficacy of chemotherapeutics to cells with hyperactive MTOR. Her...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26447

    authors: Wang Y,Hu Z,Liu Z,Chen R,Peng H,Guo J,Chen X,Zhang H

    更新日期:2013-12-01 00:00:00

  • SIRT5 regulation of ammonia-induced autophagy and mitophagy.

    abstract::In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved i...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1009778

    authors: Polletta L,Vernucci E,Carnevale I,Arcangeli T,Rotili D,Palmerio S,Steegborn C,Nowak T,Schutkowski M,Pellegrini L,Sansone L,Villanova L,Runci A,Pucci B,Morgante E,Fini M,Mai A,Russo MA,Tafani M

    更新日期:2015-01-01 00:00:00

  • Eating on the fly: function and regulation of autophagy during cell growth, survival and death in Drosophila.

    abstract::Significant progress has been made over recent years in defining the normal progression and regulation of autophagy, particularly in cultured mammalian cells and yeast model systems. However, apart from a few notable exceptions, our understanding of the physiological roles of autophagy has lagged behind these advances...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.5782

    authors: Neufeld TP,Baehrecke EH

    更新日期:2008-07-01 00:00:00

  • Harpooning the Cvt complex to the phagophore assembly site.

    abstract::Autophagy is a catabolic process employed by eukaryotes to degrade and recycle intracellular components. When this pathway is induced by starvation conditions, part of the cytoplasm and organelles are sequestered into double-membrane vesicles called autophagosomes, and delivered into the lysosome/vacuole for degradati...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6657

    authors: Monastyrska I,Reggiori F,Klionsky DJ

    更新日期:2008-10-01 00:00:00

  • Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells.

    abstract::Salinomycin is perhaps the first promising compound that was discovered through high throughput screening in cancer stem cells. This novel agent can selectively eliminate breast and other cancer stem cells, though the mechanism of action remains unclear. In this study, we found that salinomycin induced autophagy in hu...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.24632

    authors: Li T,Su L,Zhong N,Hao X,Zhong D,Singhal S,Liu X

    更新日期:2013-07-01 00:00:00

  • Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL1 via LIR motifs.

    abstract::Autophagosome formation depends on a carefully orchestrated interplay between membrane-associated protein complexes. Initiation of macroautophagy/autophagy is mediated by the ULK1 (unc-51 like autophagy activating kinase 1) protein kinase complex and the autophagy-specific class III phosphatidylinositol 3-kinase compl...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1581009

    authors: Birgisdottir ÅB,Mouilleron S,Bhujabal Z,Wirth M,Sjøttem E,Evjen G,Zhang W,Lee R,O'Reilly N,Tooze SA,Lamark T,Johansen T

    更新日期:2019-08-01 00:00:00

  • In vivo imaging of autophagy in a mouse stroke model.

    abstract::Recent studies have suggested that autophagy is involved in a neural death pathway following cerebral ischemia. In vivo detection of autophagy could be important for evaluating ischemic neural cell damage for human stroke patients. Using novel green fluorescent protein (GFP)-fused microtubule-associated protein 1 ligh...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.8.13427

    authors: Tian F,Deguchi K,Yamashita T,Ohta Y,Morimoto N,Shang J,Zhang X,Liu N,Ikeda Y,Matsuura T,Abe K

    更新日期:2010-11-01 00:00:00

  • NPC-phagy: selective autophagy of the nuclear pore complexes.

    abstract::Selective autophagy is critical for the regulation of cellular homeostasis in organisms from yeast to humans. This process is a specific degradation pathway for a wide variety of substrates including unwanted cytosolic components, such as protein aggregates, damaged and/or superfluous organelles, and pathogens. Howeve...

    journal_title:Autophagy

    pub_type: 社论

    doi:10.1080/15548627.2020.1798199

    authors: Yin Z,Klionsky DJ

    更新日期:2020-10-01 00:00:00

  • FTY720-induced blockage of autophagy enhances anticancer efficacy of milatuzumab in mantle cell lymphoma: is FTY720 the next autophagy-blocking agent in lymphoma treatment?

    abstract::Inhibition of the autophagic pathway has recently revealed promising results in increasing pro-death activity of multiple cancer therapeutics. Here, we discuss our findings regarding the autophagy-blocking and anti-neoplastic effects of a synthetic sphingosine analog, FTY720, in mantle cell lymphoma (MCL). We also emp...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.19050

    authors: Alinari L,Baiocchi RA,Praetorius-Ibba M

    更新日期:2012-03-01 00:00:00

  • How to interpret LC3 immunoblotting.

    abstract::Microtubule-associated protein light chain 3 (LC3) is now widely used to monitor autophagy. One approach is to detect LC3 conversion (LC3-I to LC3-II) by immunoblot analysis because the amount of LC3-II is clearly correlated with the number of autophagosomes. However, LC3-II itself is degraded by autophagy, making int...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.4600

    authors: Mizushima N,Yoshimori T

    更新日期:2007-11-01 00:00:00

  • Progesterone receptor membrane component 1/Sigma-2 receptor associates with MAP1LC3B and promotes autophagy.

    abstract::Autophagy resembles a recycling process in which proteins, organelles, or regions of the cytoplasm are enveloped and degraded. We have found that two of the central autophagy proteins, MAP1LC3 (microtubule-associated protein 1 light chain 3, also described as LC3) and UVRAG (UV radiation resistance associated/UV radia...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.25889

    authors: Mir SU,Schwarze SR,Jin L,Zhang J,Friend W,Miriyala S,St Clair D,Craven RJ

    更新日期:2013-10-01 00:00:00

  • Autophagy: a key pathway of TNF-induced inflammatory bone loss.

    abstract::Autophagy describes the degradation of unnecessary or dysfunctional cellular components through the lysosomal machinery. Autophagy is essentially required to prevent accumulation of cellular damage and to ensure cellular homeostasis. Indeed, impaired autophagy has been implicated in a variety of different diseases. We...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.4161/auto.25467

    authors: Lin NY,Stefanica A,Distler JH

    更新日期:2013-08-01 00:00:00

  • Autophagy protects neuron from Abeta-induced cytotoxicity.

    abstract::Autophagy is a degradation pathway for the turnover of dysfunctional organelles or aggregated proteins in cells. Extracellular accumulation of beta-amyloid peptide has been reported to be a major cause of Alzheimer disease (AD) and large numbers of autophagic vacuoles accumulate in the brain of AD patient. However, ho...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.4.8096

    authors: Hung SY,Huang WP,Liou HC,Fu WM

    更新日期:2009-05-01 00:00:00

  • Reticulocyte mitophagy: monitoring mitochondrial clearance in a mammalian model.

    abstract::Mitochondria are the primary site of energy production in animal cells. In mitochondria, the flow of electrons through the electron transport chain creates a potential difference across the inner membrane, which is utilized for ATP production. However, due to inherent inefficiencies in electron transport, reactive oxy...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.3.11245

    authors: Zhang J,Ney PA

    更新日期:2010-04-01 00:00:00

  • Mitochondrial elongation during autophagy: a stereotypical response to survive in difficult times.

    abstract::Mitochondrial morphological and structural changes play a role in several cellular processes, including apoptosis. We recently reported that mitochondrial elongation is also critical to sustain cell viability during macroautophagy. During macroautophagy unopposed mitochondrial fusion leads to organelle elongation both...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.10.16771

    authors: Gomes LC,Scorrano L

    更新日期:2011-10-01 00:00:00

  • PARK7 modulates autophagic proteolysis through binding to the N-terminally arginylated form of the molecular chaperone HSPA5.

    abstract::Macroautophagy is induced under various stresses to remove cytotoxic materials, including misfolded proteins and their aggregates. These protein cargoes are collected by specific autophagic receptors such as SQSTM1/p62 (sequestosome 1) and delivered to phagophores for lysosomal degradation. To date, little is known ab...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1491212

    authors: Lee DH,Kim D,Kim ST,Jeong S,Kim JL,Shim SM,Heo AJ,Song X,Guo ZS,Bartlett DL,Oh SC,Lee J,Saito Y,Kim BY,Kwon YT,Lee YJ

    更新日期:2018-01-01 00:00:00

  • An integrative multi-omics approach uncovers the regulatory role of CDK7 and CDK4 in autophagy activation induced by silica nanoparticles.

    abstract::Dysfunction of macroautophagy/autophagy has been postulated as a major cellular toxicological response to nanomaterials. It has been reported that excessive autophagy activation, induced by silica nanoparticles (SiNPs), contributes to autophagy dysfunction, whereas little is known how SiNPs trigger autophagy activatio...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1763019

    authors: Ruan C,Wang C,Gong X,Zhang Y,Deng W,Zhou J,Huang D,Wang Z,Zhang Q,Guo A,Lu J,Gao J,Peng D,Xue Y

    更新日期:2020-05-23 00:00:00

  • Context effect: microRNA-10b in cancer cell proliferation, spread and death.

    abstract::Single microRNA (miRNA) can regulate expression of several or multiple principal targets in a specific microenvironment. In different cellular contexts, the same miRNA may exhibit diverse functions, depending on the repertoire and stoichiometry of its direct mRNA targets. For instance, in breast cancer, microRNA-10b (...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.11.17371

    authors: Gabriely G,Teplyuk NM,Krichevsky AM

    更新日期:2011-11-01 00:00:00

  • When more is less: excess and deficiency of autophagy coexist in skeletal muscle in Pompe disease.

    abstract::The role of autophagy, a catabolic lysosome-dependent pathway, has recently been recognized in a variety of disorders, including Pompe disease, which results from a deficiency of the glycogen-degrading lysosomal hydrolase acid-alpha glucosidase (GAA). Skeletal and cardiac muscle are most severely affected by the progr...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.1.7293

    authors: Raben N,Baum R,Schreiner C,Takikita S,Mizushima N,Ralston E,Plotz P

    更新日期:2009-01-01 00:00:00

  • Could melatonin unbalance the equilibrium between autophagy and invasive processes?

    abstract::The Syrian hamster Harderian gland (HG) is a juxtaorbital organ exhibiting marked gender-associated morphological differences. Regarding contents of porphyrins, this gland is a good model for studying physiological oxidative stress effects, since both sexes present strong (in females) and moderate (in males) levels of...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.2.2.2351

    authors: Coto-Montes A,Tomás-Zapico C

    更新日期:2006-04-01 00:00:00

  • Dismantling the autophagic arsenal when it is time to die: concerted AMBRA1 degradation by caspases and calpains.

    abstract::Under stress conditions cells activate different response pathways which result in cell survival or apoptosis depending on: (1) the nature of the insults, (2) the type, if acute or chronic stress, and (3) how long the stress persists. Generally, autophagy is induced early to sustain cell survival and inhibit cell deat...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.20671

    authors: Corazzari M,Fimia GM,Piacentini M

    更新日期:2012-08-01 00:00:00

  • Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines.

    abstract::Burkholderia pseudomallei is the causative agent of melioidosis, a tropical infection of humans and other animals. The bacterium is an intracellular pathogen that can escape from endosomes into the host cytoplasm, where it replicates and infects adjacent cells. We investigated the role played by autophagy in the intra...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6246

    authors: Cullinane M,Gong L,Li X,Lazar-Adler N,Tra T,Wolvetang E,Prescott M,Boyce JD,Devenish RJ,Adler B

    更新日期:2008-08-01 00:00:00

  • Dual inhibition of autophagy and the AKT pathway in prostate cancer.

    abstract::Genetic inactivation of PTEN through either gene deletion or mutation is common in metastatic prostate cancer, leading to activation of the phosphoinositide 3-kinase (PI3K-AKT) pathway, which is associated with poor clinical outcomes. The PI3K-AKT pathway plays a central role in various cellular processes supporting c...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.24921

    authors: Lamoureux F,Zoubeidi A

    更新日期:2013-07-01 00:00:00

  • Clearance of a Hirano body-like F-actin aggresome generated by jasplakinolide.

    abstract::We have reported in a variety of mammalian cells the reversible formation of a filamentous actin (F-actin)-enriched aggresome generated by the actin toxin jasplakinolide (Lázaro-Diéguez et al., J Cell Sci 2008; 121:1415-25). Notably, this F-actin aggresome (FAG) resembles in many aspects the pathological Hirano body, ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6345

    authors: Lázaro-Diéguez F,Knecht E,Egea G

    更新日期:2008-07-01 00:00:00

  • Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    abstract::In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/15548627.2014.994413

    authors: Corral-Ramos C,Roca MG,Di Pietro A,Roncero MI,Ruiz-Roldán C

    更新日期:2015-01-01 00:00:00

  • Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation.

    abstract::The vascular system of plants consists of two conducting tissues, xylem and phloem, which differentiate from procambium cells. Xylem serves as a transporting system for water and signaling molecules and is formed by sequential developmental processes, including cell division/expansion, secondary cell wall deposition, ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.8.13429

    authors: Kwon SI,Cho HJ,Park OK

    更新日期:2010-11-01 00:00:00

  • Rapamycin prevents spontaneous abortion by triggering decidual stromal cell autophagy-mediated NK cell residence.

    abstract::Deficiency in decidualization has been widely regarded as an important cause of spontaneous abortion. Generalized decidualization also includes massive infiltration and enrichment of NK cells. However, the underlying mechanism of decidual NK (dNK) cell residence remains largely unknown. Here, we observe that the incre...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1833515

    authors: Lu H,Yang HL,Zhou WJ,Lai ZZ,Qiu XM,Fu Q,Zhao JY,Wang J,Li DJ,Li MQ

    更新日期:2020-11-01 00:00:00

  • KSHV reduces autophagy in THP-1 cells and in differentiating monocytes by decreasing CAST/calpastatin and ATG5 expression.

    abstract::We have previously shown that Kaposi sarcoma-associated herpesvirus (KSHV) impairs monocyte differentiation into dendritic cells (DCs). Macroautophagy/autophagy has been reported to be essential in such a differentiating process. Here we extended these studies and found that the impairment of DC formation by KSHV occu...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1235122

    authors: Santarelli R,Granato M,Pentassuglia G,Lacconi V,Gilardini Montani MS,Gonnella R,Tafani M,Torrisi MR,Faggioni A,Cirone M

    更新日期:2016-12-01 00:00:00