Processing of autophagic protein LC3 by the 20S proteasome.

Abstract:

:Ubiquitin-proteasome system and autophagy are the two major mechanisms for protein degradation in eukaryotic cells. LC3, a ubiquitin-like protein, plays an essential role in autophagy through its ability to be conjugated to phosphatidylethanolamine. In this study, we discovered a novel LC3-processing activity, and biochemically purified the 20S proteasome as the responsible enzyme. Processing of LC3 by the 20S proteasome is ATP- and ubiquitin-independent, and requires both the N-terminal helices and the ubiquitin fold of LC3; addition of the N-terminal helices of LC3 to the N terminus of ubiquitin renders ubiquitin susceptible to 20S proteasomal activity. Further, the 20S proteasome processes LC3 in a stepwise manner, it first cleaves LC3 within its ubiquitin fold and thus disrupts the conjugation function of LC3; subsequently and especially at high concentrations of the proteasome, LC3 is completely degraded. Intriguingly, proteolysis of LC3 by the 20S proteasome can be inhibited by p62, an LC3-binding protein that mediates autophagic degradation of polyubiquitin aggregates in cells. Therefore, our study implicates a potential mechanism underlying interplay between the proteasomal and autophagic pathways. This study also provides biochemical evidence suggesting relevance of the controversial ubiquitin-independent proteolytic activity of the 20S proteasome.

journal_name

Autophagy

journal_title

Autophagy

authors

Gao Z,Gammoh N,Wong PM,Erdjument-Bromage H,Tempst P,Jiang X

doi

10.4161/auto.6.1.10928

subject

Has Abstract

pub_date

2010-01-01 00:00:00

pages

126-37

issue

1

eissn

1554-8627

issn

1554-8635

pii

10928

journal_volume

6

pub_type

杂志文章
  • In mammalian skeletal muscle, phosphorylation of TOMM22 by protein kinase CSNK2/CK2 controls mitophagy.

    abstract::In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and prop...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1403716

    authors: Kravic B,Harbauer AB,Romanello V,Simeone L,Vögtle FN,Kaiser T,Straubinger M,Huraskin D,Böttcher M,Cerqua C,Martin ED,Poveda-Huertes D,Buttgereit A,Rabalski AJ,Heuss D,Rudolf R,Friedrich O,Litchfield D,Marber M,Salvi

    更新日期:2018-01-01 00:00:00

  • Inhibition of autophagy as a therapeutic strategy of iron-induced brain injury after hemorrhage.

    abstract::Premenopausal women have better survival than men after intracerebral hemorrhage, which is associated with iron overproduction and autophagy induction. To examine the participation of neuronal autophagy and estrogen receptor α (ERα) in the E 2-mediated protection, PC12 neurons treated with Atg7 (autophagy-related prot...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.21289

    authors: Chen CW,Chen TY,Tsai KL,Lin CL,Yokoyama KK,Lee WS,Chiueh CC,Hsu C

    更新日期:2012-10-01 00:00:00

  • CYB5A and autophagy-mediated cell death in pancreatic cancer.

    abstract::The highly invasive and chemoresistant phenotype of pancreatic cancer highlights the urgency to identify prognostic biomarkers and novel therapeutic targets. Recently, we observed a significant correlation between shorter survival and loss of the cytoband 18q22.3. Here we investigated genes encoded by this cytoband, a...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.27803

    authors: Giovannetti E,Giaccone G

    更新日期:2014-04-01 00:00:00

  • Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5).

    abstract::Blood-brain barrier (BBB) disruption is a key event in triggering secondary damage to the central nervous system (CNS) under stroke, and is frequently associated with abnormal macroautophagy/autophagy in brain microvascular endothelial cells (BMECs). However, the underlying mechanism of autophagy in maintaining BBB in...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1851897

    authors: Yang Z,Lin P,Chen B,Zhang X,Xiao W,Wu S,Huang C,Feng D,Zhang W,Zhang J

    更新日期:2020-12-07 00:00:00

  • Suppressing the dark side of autophagy.

    abstract::A wide variety of genetic, pharmacological and nutrient manipulations that extend lifespan in model organisms do so in a manner dependent upon increased autophagic flux. However, our recent findings suggest that when mitochondrial membrane integrity is compromised, macroautophagy/autophagy can be detrimental. In C. el...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1644077

    authors: Zhou B,Soukas AA

    更新日期:2019-10-01 00:00:00

  • The yin and yang of autophagy in acute kidney injury.

    abstract::Antagonizing the strongly activated pathway of autophagy in renal ischemic injury has been associated with poor outcome. In our recent study we used mice with a selective deletion of Atg5 in the S3 proximal tubule segment, which is most susceptible to ischemic damage. In line with the notion that autophagy is a prosur...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1135284

    authors: Melk A,Baisantry A,Schmitt R

    更新日期:2016-01-01 00:00:00

  • A role for chloride transport in lysosomal protein degradation.

    abstract::Loss of the lysosomal chloride transport protein ClC-7 leads to complex phenotypes in mice and man, including osteopetrosis, accumulation of lysosomal storage material, and neurodegeneration. Using novel tissue-specific ClC-7 knockout mice, we have shown that upon loss of ClC-7, lysosomal degradation of endocytosed pr...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.6.1.10590

    authors: Wartosch L,Stauber T

    更新日期:2010-01-01 00:00:00

  • TP53 is required for BECN1- and ATG5-dependent cell death induced by sphingosine kinase 1 inhibition.

    abstract::The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) and the enzyme that produces it, SPHK1 (sphingosine kinase 1), regulate many processes important for the etiology of cancer. It has been suggested that SPHK1 levels are regulated by the tumor suppressor protein TP53, a key regulator of cell cycle arre...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1429875

    authors: Lima S,Takabe K,Newton J,Saurabh K,Young MM,Leopoldino AM,Hait NC,Roberts JL,Wang HG,Dent P,Milstien S,Booth L,Spiegel S

    更新日期:2018-01-01 00:00:00

  • Role for nanomaterial-autophagy interaction in neurodegenerative disease.

    abstract::Nanotechnology is the control and manipulation of materials in the size range of 1-100 nm. Due to increasing research into the potential beneficial applications of nanotechnology, there is an urgent need for the study of possible health risks. Several researchers, including those in our laboratory, have demonstrated e...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7142

    authors: Stern ST,Johnson DN

    更新日期:2008-11-01 00:00:00

  • Beyond autophagy: the role of UVRAG in membrane trafficking.

    abstract::Autophagy is a lysosome-directed membrane trafficking event for the degradation of cytoplasmic components, including organelles. The past few years have seen a great advance in our understanding of the cellular machinery of autophagosome biogenesis, the hallmark of autophagy. However, our global understanding of autop...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6496

    authors: Liang C,Sir D,Lee S,Ou JH,Jung JU

    更新日期:2008-08-01 00:00:00

  • Denervation-induced oxidative stress and autophagy signaling in muscle.

    abstract::Alterations in contractile activity influence the intracellular homeostasis of muscle, which results in adaptations in the performance and the phenotype of this tissue. Denervation is an effective disuse model that functions to change the intracellular environment of muscle leading to a rapid loss in mass, a decrease ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.2.7391

    authors: O'Leary MF,Hood DA

    更新日期:2009-02-01 00:00:00

  • SIRT5 regulation of ammonia-induced autophagy and mitophagy.

    abstract::In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved i...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1009778

    authors: Polletta L,Vernucci E,Carnevale I,Arcangeli T,Rotili D,Palmerio S,Steegborn C,Nowak T,Schutkowski M,Pellegrini L,Sansone L,Villanova L,Runci A,Pucci B,Morgante E,Fini M,Mai A,Russo MA,Tafani M

    更新日期:2015-01-01 00:00:00

  • Atg14 protects the intestinal epithelium from TNF-triggered villus atrophy.

    abstract::Regulation of intestinal epithelial turnover is a key component of villus maintenance in the intestine. The balance of cell turnover can be perturbed by various extrinsic factors including the cytokine TNF, a cell signaling protein that mediates both proliferative and cytotoxic outcomes. Under conditions of infection ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1596495

    authors: Jung H,Leal-Ekman JS,Lu Q,Stappenbeck TS

    更新日期:2019-11-01 00:00:00

  • The role of autophagy during coxsackievirus infection of neural progenitor and stem cells.

    abstract::Coxsackievirus B3 (CVB3) has previously been shown to utilize autophagy in an advantageous manner during the course of infection of the host cell. However, few studies have determined whether stem cells induce autophagy in a similar fashion, and whether virus-induced autophagy occurs following infection of stem cells....

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.19781

    authors: Tabor-Godwin JM,Tsueng G,Sayen MR,Gottlieb RA,Feuer R

    更新日期:2012-06-01 00:00:00

  • A second report from the EMBO conference on autophagy: mechanism, regulation and selectivity of autophagy.

    abstract::Some key questions being examined in the field of autophagy concern the origin of the membrane that forms the sequestering vesicle, the function of the related machinery, including the identification of new components and binding partners of previously identified autophagy-related proteins and the mechanism of autopha...

    journal_title:Autophagy

    pub_type:

    doi:10.4161/auto.6.1.10819

    authors: Vellai T,Klionsky DJ

    更新日期:2010-01-01 00:00:00

  • Autophagosome formation: Where the secretory and autophagy pathways meet.

    abstract::The upregulation of autophagosome formation in response to nutrient deprivation requires significant intracellular membrane rearrangements that are poorly understood. Recent findings have implicated COPII-coated vesicles, well known as ER-Golgi cargo transport carriers, as key players in macroautophagy. The role of CO...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.1080/15548627.2017.1287657

    authors: Wang J,Davis S,Zhu M,Miller EA,Ferro-Novick S

    更新日期:2017-05-04 00:00:00

  • HIF1A Alleviates compression-induced apoptosis of nucleus pulposus derived stem cells via upregulating autophagy.

    abstract::Intervertebral disc degeneration (IDD) is the primary pathological mechanism that underlies low back pain. Overloading-induced cell death, especially endogenous stem cell death, is the leading factor that undermines intrinsic repair and aggravates IDD. Previous research has separately studied the effect of oxygen conc...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2021.1872227

    authors: He R,Wang Z,Cui M,Liu S,Wu W,Chen M,Wu Y,Qu Y,Lin H,Chen S,Wang B,Shao Z

    更新日期:2021-01-18 00:00:00

  • Driving next-generation autophagy researchers towards translation (DRIVE), an international PhD training program on autophagy.

    abstract::The European autophagy consortium Driving next-generation autophagy researchers towards translation (DRIVE) held its kick-off meeting in Groningen on the 14th and 15th of June 2018. This Marie Skłodowska-Curie Early Training Network was approved under the European Union's Horizon 2020 Research and Innovation Program a...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1515532

    authors: Kraft C,Boya P,Codogno P,Elazar Z,Eskelinen EL,Farrés J,Kirkin V,Jungbluth H,Martinez A,Pless O,Primard C,Proikas-Cezanne T,Simonsen A,Reggiori F

    更新日期:2019-02-01 00:00:00

  • Could melatonin unbalance the equilibrium between autophagy and invasive processes?

    abstract::The Syrian hamster Harderian gland (HG) is a juxtaorbital organ exhibiting marked gender-associated morphological differences. Regarding contents of porphyrins, this gland is a good model for studying physiological oxidative stress effects, since both sexes present strong (in females) and moderate (in males) levels of...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.2.2.2351

    authors: Coto-Montes A,Tomás-Zapico C

    更新日期:2006-04-01 00:00:00

  • Potential subversion of autophagosomal pathway by picornaviruses.

    abstract::The RNA replication complexes of small positive-strand RNA viruses such as poliovirus are known to form on the surfaces of membranous vesicles in the cytoplasm of infected mammalian cells. These membranes resemble cellular autophagosomes in their double-membraned morphology, cytoplasmic lumen, lipid-rich composition a...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.5377

    authors: Taylor MP,Kirkegaard K

    更新日期:2008-04-01 00:00:00

  • Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation.

    abstract::The vascular system of plants consists of two conducting tissues, xylem and phloem, which differentiate from procambium cells. Xylem serves as a transporting system for water and signaling molecules and is formed by sequential developmental processes, including cell division/expansion, secondary cell wall deposition, ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.8.13429

    authors: Kwon SI,Cho HJ,Park OK

    更新日期:2010-11-01 00:00:00

  • The trehalose-6-phosphate phosphatase Tps2 regulates ATG8 transcription and autophagy in Saccharomyces cerevisiae.

    abstract::Macroautophagy/autophagy is an important catabolic process for maintaining cellular homeostasis by adapting to various stress conditions. Autophagy is mediated by a double-membrane autophagosome, which sequesters a portion of cytoplasmic components for delivery to the vacuole. Several autophagy-related (ATG) genes pla...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1746592

    authors: Kim B,Lee Y,Choi H,Huh WK

    更新日期:2020-04-02 00:00:00

  • Early alterations of autophagy in Huntington disease-like mice.

    abstract::In a recent study, we reported in vivo evidence of early and sustained alterations of autophagy markers in a novel knock-in mouse model of Huntington disease (HD). The novel model is derived from selective breeding of HdhQ150 knock-in mice to generate mice with ~200 CAG/polyglutamine repeats (HdhQ200). HdhQ200 knockin...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.8.13617

    authors: Heng MY,Detloff PJ,Paulson HL,Albin RL

    更新日期:2010-11-01 00:00:00

  • The induction of autophagy by mechanical stress.

    abstract::The ability to respond and adapt to changes in the physical environment is a universal and essential cellular property. Here we demonstrated that cells respond to mechanical compressive stress by rapidly inducing autophagosome formation. We measured this response in both Dictyostelium and mammalian cells, indicating t...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.12.17924

    authors: King JS,Veltman DM,Insall RH

    更新日期:2011-12-01 00:00:00

  • Retromer regulates the lysosomal clearance of MAPT/tau.

    abstract::The macroautophagy/autophagy-lysosome axis enables the clearance and degradation of cytoplasmic components including protein aggregates, damaged organelles and invading pathogens. Protein aggregation and lysosomal system dysfunction in the brain are common features of several late-onset neurological disorders includin...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1821545

    authors: Carosi JM,Hein LK,van den Hurk M,Adams R,Milky B,Singh S,Bardy C,Denton D,Kumar S,Sargeant TJ

    更新日期:2020-09-22 00:00:00

  • Inflammatory signaling cascades and autophagy in cancer.

    abstract::Tumor-associated inflammation is predictive of poor prognosis and drives a variety of tumorigenic phenotypes, including tumor proliferation and survival, angiogenesis, invasiveness, and metastasis. Here, we review mammalian data addressing the interaction of macroautophagy/autophagy with key signaling cascades associa...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.1080/15548627.2017.1345412

    authors: Monkkonen T,Debnath J

    更新日期:2018-01-01 00:00:00

  • Cytoprotective and nonprotective autophagy in cancer therapy.

    abstract::Two primary forms of autophagy have been identified in the field of cancer therapy based on their apparent functions in the tumor cell; these are the cytoprotective form that could, in theory, be inhibited for the purpose of sensitization to radiation and chemotherapeutic drugs and the "cytotoxic" form that either med...

    journal_title:Autophagy

    pub_type: 社论

    doi:10.4161/auto.25233

    authors: Gewirtz DA

    更新日期:2013-09-01 00:00:00

  • Modification of BECN1 by ISG15 plays a crucial role in autophagy regulation by type I IFN/interferon.

    abstract::ISG15 (ISG15 ubiquitin-like modifier), a ubiquitin-like protein, is one of the major type I IFN (interferon) effector systems. ISG15 can be conjugated to target proteins (ISGylation) via the stepwise action of E1, E2, and E3 enzymes. Conjugated ISG15 can be removed (deISGylated) from target proteins by USP18 (ubiquiti...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1023982

    authors: Xu D,Zhang T,Xiao J,Zhu K,Wei R,Wu Z,Meng H,Li Y,Yuan J

    更新日期:2015-04-03 00:00:00

  • Jurassic PARK2: You eat your mitochondria, and you are what your mitochondria eat.

    abstract::Park2/Parkin is a central mediator of selective mitochondrial autophagy for mitochondrial quality control. We showed in mouse hearts that PINK1/Mfn2/Park2 mediated generalized mitophagy is essential to the normal perinatal transition from fetal mitochondria that prefer carbohydrates as metabolic substrates to adult fa...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1143210

    authors: Dorn GW 2nd

    更新日期:2016-01-01 00:00:00

  • Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance.

    abstract::Breast cancer tissue contains a small population of cells that have the ability to self-renew; these cells are known as cancer stem-like cells (CSCs). We have recently shown that autophagy is essential for the tumorigenicity of these CSCs. Salinomycin (Sal), a K (+) /H (+) ionophore, has recently been shown to be at l...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.23997

    authors: Yue W,Hamaï A,Tonelli G,Bauvy C,Nicolas V,Tharinger H,Codogno P,Mehrpour M

    更新日期:2013-05-01 00:00:00