Potential subversion of autophagosomal pathway by picornaviruses.

Abstract:

:The RNA replication complexes of small positive-strand RNA viruses such as poliovirus are known to form on the surfaces of membranous vesicles in the cytoplasm of infected mammalian cells. These membranes resemble cellular autophagosomes in their double-membraned morphology, cytoplasmic lumen, lipid-rich composition and the presence of cellular proteins LAMP 1 and LC3. Furthermore, LC3 protein is covalently modified during poliovirus infection in a manner indistinguishable from that observed during bona fide autophagy. This covalent modification can also be induced by the expression of viral protein 2BC in isolation. However, differences between poliovirus-induced vesicles and autophagosomes also exist: the viral-induced membranes are smaller, at 200-400 nm in diameter, and can be induced by the combination of two viral proteins, termed 2BC and 3A. Experimental suppression of expression of proteins in the autophagy pathway was found to reduce viral yield, arguing that this pathway facilitates viral infection, rather than clearing it. We have hypothesized that, in addition to providing membranous surfaces for assembly of viral RNA replication complexes, double-membraned vesicles provide a topological mechanism to deliver cytoplasmic contents, including mature virus, to the extracellular milieu without lysing the cell.

journal_name

Autophagy

journal_title

Autophagy

authors

Taylor MP,Kirkegaard K

doi

10.4161/auto.5377

subject

Has Abstract

pub_date

2008-04-01 00:00:00

pages

286-9

issue

3

eissn

1554-8627

issn

1554-8635

pii

5377

journal_volume

4

pub_type

杂志文章,评审
  • Restoring autophagic flux attenuates cochlear spiral ganglion neuron degeneration by promoting TFEB nuclear translocation via inhibiting MTOR.

    abstract::Macroautophagy/autophagy dysfunction is associated with many neurodegenerative diseases. TFEB (transcription factor EB), an important molecule that regulates lysosomal and autophagy function, is regarded as a potential target for treating some neurodegenerative diseases. However, the relationship between autophagy dys...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1569926

    authors: Ye B,Wang Q,Hu H,Shen Y,Fan C,Chen P,Ma Y,Wu H,Xiang M

    更新日期:2019-06-01 00:00:00

  • Retromer regulates the lysosomal clearance of MAPT/tau.

    abstract::The macroautophagy/autophagy-lysosome axis enables the clearance and degradation of cytoplasmic components including protein aggregates, damaged organelles and invading pathogens. Protein aggregation and lysosomal system dysfunction in the brain are common features of several late-onset neurological disorders includin...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1821545

    authors: Carosi JM,Hein LK,van den Hurk M,Adams R,Milky B,Singh S,Bardy C,Denton D,Kumar S,Sargeant TJ

    更新日期:2020-09-22 00:00:00

  • Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein.

    abstract::KRAS is the most frequently mutated oncogene in human neoplasia. Despite a large investment to understand the effects of KRAS mutation in cancer cells, the direct effects of the oncogenetic KRAS activation on immune cells remain elusive. Here, we report that extracellular KRASG12D is essential for pancreatic tumor-ass...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1714209

    authors: Dai E,Han L,Liu J,Xie Y,Kroemer G,Klionsky DJ,Zeh HJ,Kang R,Wang J,Tang D

    更新日期:2020-11-01 00:00:00

  • The C-terminal region of ATG101 bridges ULK1 and PtdIns3K complex in autophagy initiation.

    abstract::The initiation of macroautophagy/autophagy is tightly regulated by the upstream ULK1 kinase complex, which affects many downstream factors including the PtdIns3K complex. The phosphorylation of the right position at the right time on downstream molecules is governed by proper complex formation. One component of the UL...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1504716

    authors: Kim BW,Jin Y,Kim J,Kim JH,Jung J,Kang S,Kim IY,Kim J,Cheong H,Song HK

    更新日期:2018-01-01 00:00:00

  • A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications.

    abstract::The lack of a rapid and quantitative autophagy assay has substantially hindered the development and implementation of autophagy-targeting therapies for a variety of human diseases. To address this critical issue, we developed a novel autophagy assay using the newly developed Cyto-ID fluorescence dye. We first verified...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1017181

    authors: Guo S,Liang Y,Murphy SF,Huang A,Shen H,Kelly DF,Sobrado P,Sheng Z

    更新日期:2015-01-01 00:00:00

  • Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells.

    abstract::Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high signif...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1196313

    authors: Huang H,Zhu J,Li Y,Zhang L,Gu J,Xie Q,Jin H,Che X,Li J,Huang C,Chen LC,Lyu J,Gao J,Huang C

    更新日期:2016-10-02 00:00:00

  • Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression.

    abstract::Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is com...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1385674

    authors: Perera ND,Sheean RK,Lau CL,Shin YS,Beart PM,Horne MK,Turner BJ

    更新日期:2018-01-01 00:00:00

  • Critical role of autophage in ischemia/reperfusion injury to aged livers.

    abstract::A steady increase in life expectancy has resulted in an equivalent increase in elderly patients who are more susceptible to diseases than young patients. In a recent study, we found that in both in vitro and in vivo models of ischemia/reperfusion (I/R), a loss of ATG4B is causatively associated with the increased sens...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.8.1.18391

    authors: Wang JH,Behrns KE,Leeuwenburgh C,Kim JS

    更新日期:2012-01-01 00:00:00

  • VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway.

    abstract::Mutations in the ER-associated VAPB/ALS8 protein cause amyotrophic lateral sclerosis and spinal muscular atrophy. Previous studies have argued that ER stress may underlie the demise of neurons. We find that loss of VAP proteins (VAPs) leads to an accumulation of aberrant lysosomes and impairs lysosomal degradation. VA...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1580103

    authors: Mao D,Lin G,Tepe B,Zuo Z,Tan KL,Senturk M,Zhang S,Arenkiel BR,Sardiello M,Bellen HJ

    更新日期:2019-07-01 00:00:00

  • Autophagy as a rescue mechanism in efavirenz-induced mitochondrial dysfunction: a lesson from hepatic cells.

    abstract::Efavirenz (EFV) is the most widely used non-nucleoside reverse transcriptase inhibitor applied in highly active antiretroviral therapy (HAART), the combined pharmacological treatment of the human immunodeficiency virus infection. Its use has been associated with the development of several adverse events including hepa...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.11.17653

    authors: Apostolova N,Gomez-Sucerquia LJ,Gortat A,Blas-Garcia A,Esplugues JV

    更新日期:2011-11-01 00:00:00

  • Astrocytes promote progression of breast cancer metastases to the brain via a KISS1-mediated autophagy.

    abstract::Formation of metastases, also known as cancer dissemination, is an important stage of breast cancer (BrCa) development. KISS1 expression is associated with inhibition of metastases development. Recently we have demonstrated that BrCa metastases to the brain exhibit low levels of KISS1 expression at both mRNA and prote...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1360466

    authors: Kaverina N,Borovjagin AV,Kadagidze Z,Baryshnikov A,Baryshnikova M,Malin D,Ghosh D,Shah N,Welch DR,Gabikian P,Karseladze A,Cobbs C,Ulasov IV

    更新日期:2017-01-01 00:00:00

  • PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy.

    abstract::Prion protein modulates many cellular functions including the secretion of trophic factors by astrocytes. Some of these factors are found in exosomes, which are formed within multivesicular bodies (MVBs) and secreted into the extracellular space to modulate cell-cell communication. The mechanisms underlying exosome bi...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1226735

    authors: Dias MV,Teixeira BL,Rodrigues BR,Sinigaglia-Coimbra R,Porto-Carreiro I,Roffé M,Hajj GN,Martins VR

    更新日期:2016-11-01 00:00:00

  • The puncta enigma.

    abstract::This Editor's Corner may sound like the title of a mystery novel, but it actually reflects a question I have about the puncta articles that appear in Autophagy (or rather, the ones that do not appear). In particular, I am surprised by the number of solicitations sent out for puncta that are either ignored, or, less fr...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1349043

    authors: Klionsky DJ

    更新日期:2017-09-02 00:00:00

  • How RB1CC1/FIP200 claws its way to autophagic engulfment of SQSTM1/p62-ubiquitin condensates.

    abstract::Macroautophagy/autophagy mediates the degradation of ubiquitinated aggregated proteins within lysosomes in a process known as aggrephagy. The cargo receptor SQSTM1/p62 condenses aggregated proteins into larger structures and links them to the nascent autophagosomal membrane (phagophore). How the condensation reaction ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1615306

    authors: Turco E,Witt M,Abert C,Bock-Bierbaum T,Su MY,Trapannone R,Sztacho M,Danieli A,Shi X,Zaffagnini G,Gamper A,Schuschnig M,Fracchiolla D,Bernklau D,Romanov J,Hartl M,Hurley JH,Daumke O,Martens S

    更新日期:2019-08-01 00:00:00

  • Caspase activation regulates the extracellular export of autophagic vacuoles.

    abstract::The endothelium plays a central role in the regulation of vascular wall cellularity and tone by secreting an array of mediators of importance in intercellular communication. Nutrient deprivation of human endothelial cells (EC) evokes unconventional forms of secretion leading to the release of nanovesicles distinct fro...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.19768

    authors: Sirois I,Groleau J,Pallet N,Brassard N,Hamelin K,Londono I,Pshezhetsky AV,Bendayan M,Hébert MJ

    更新日期:2012-06-01 00:00:00

  • Stimulation of ATG12-ATG5 conjugation by ribonucleic acid.

    abstract::The ubiquitin-like conjugation reactions, ATG8/microtubule-associated protein 1 light chain 3/MAP1LC3 (LC3) to phosphatidylethanolamine (PE) and ATG12 to ATG5, are biochemical hallmarks for autophagy, a cellular process that degrades bulk cellular proteins and organelles. The two conjugation reactions share the same E...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.3270

    authors: Shao Y,Gao Z,Feldman T,Jiang X

    更新日期:2007-01-01 00:00:00

  • SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells.

    abstract::SPHK1 (sphingosine kinase 1), a regulator of sphingolipid metabolites, plays a causal role in the development of hepatocellular carcinoma (HCC) through augmenting HCC invasion and metastasis. However, the mechanism by which SPHK1 signaling promotes invasion and metastasis in HCC remains to be clarified. Here, we repor...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1291479

    authors: Liu H,Ma Y,He HW,Zhao WL,Shao RG

    更新日期:2017-05-04 00:00:00

  • Autophagy and access: understanding the role of androgen receptor subcellular localization in SBMA.

    abstract::Ridding neurons of toxic misfolded proteins is a critical feature of many neurodegenerative diseases. We have recently reported that lack of access of nuclear polyglutamine-expanded androgen receptor (AR) to the autophagic degradation pathway is a critical point in pathogenesis. When mutant AR is contained within the ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.8.9726

    authors: Montie HL,Merry DE

    更新日期:2009-11-01 00:00:00

  • Gene essentiality of Tubgcp4: dosage effect and autophagy regulation in retinal photoreceptors.

    abstract::Photoreceptor degeneration and damages often lead to blindness, and the underlying molecular mechanisms are largely unknown. There is also a lot of missing information for establishing the role of macroautophagy/autophagy in the retinopathy. We recently generated knockout mouse lines of the essential gene Tubgcp4 (tub...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1647023

    authors: Xu X,Shang D,Cheng H,Klionsky DJ,Zhou R

    更新日期:2019-10-01 00:00:00

  • PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis.

    abstract::Cigarette smoke (CS)-induced mitochondrial damage with increased reactive oxygen species (ROS) production has been implicated in COPD pathogenesis by accelerating senescence. Mitophagy may play a pivotal role for removal of CS-induced damaged mitochondria, and the PINK1 (PTEN-induced putative kinase 1)-PARK2 pathway h...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1017190

    authors: Ito S,Araya J,Kurita Y,Kobayashi K,Takasaka N,Yoshida M,Hara H,Minagawa S,Wakui H,Fujii S,Kojima J,Shimizu K,Numata T,Kawaishi M,Odaka M,Morikawa T,Harada T,Nishimura SL,Kaneko Y,Nakayama K,Kuwano K

    更新日期:2015-01-01 00:00:00

  • Phagocytosis of cells dying through autophagy evokes a pro-inflammatory response in macrophages.

    abstract::Autophagy as a natural part of cellular homeostasis usually takes place unnoticed by neighboring cells. However, its co-occurrence with cell death may contribute to the clearance of these dying cells by recruited phagocytes. Autophagy associated with programmed cell death has recently been reported to be essential for...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.4731

    authors: Petrovski G,Zahuczky G,Májai G,Fésüs L

    更新日期:2007-09-01 00:00:00

  • Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome.

    abstract::Based on a functional categorization, proteins may be grouped into three types and sorted to either the proteasome or the macroautophagy pathway for degradation. The two pathways are mechanistically connected but their capacity seems different. Macroautophagy can degrade all forms of misfolded proteins whereas proteas...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.5190

    authors: Ding WX,Yin XM

    更新日期:2008-02-01 00:00:00

  • Harpooning the Cvt complex to the phagophore assembly site.

    abstract::Autophagy is a catabolic process employed by eukaryotes to degrade and recycle intracellular components. When this pathway is induced by starvation conditions, part of the cytoplasm and organelles are sequestered into double-membrane vesicles called autophagosomes, and delivered into the lysosome/vacuole for degradati...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6657

    authors: Monastyrska I,Reggiori F,Klionsky DJ

    更新日期:2008-10-01 00:00:00

  • Autophagy proteins are not universally required for phagosome maturation.

    abstract::Phagocytosis plays a central role in immunity and tissue homeostasis. After internalization of cargo into single-membrane phagosomes, these compartments undergo a maturation sequences that terminates in lysosome fusion and cargo degradation. Components of the autophagy pathway have recently been linked to phagosome ma...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1191724

    authors: Cemma M,Grinstein S,Brumell JH

    更新日期:2016-09-01 00:00:00

  • The cyclin-dependent kinase PITSLRE/CDK11 is required for successful autophagy.

    abstract::(Macro)autophagy is a membrane-trafficking process that serves to sequester cellular constituents in organelles termed autophagosomes, which target their degradation in the lysosome. Autophagy operates at basal levels in all cells where it serves as a homeostatic mechanism to maintain cellular integrity. The levels an...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.11.16646

    authors: Wilkinson S,Croft DR,O'Prey J,Meedendorp A,O'Prey M,Dufès C,Ryan KM

    更新日期:2011-11-01 00:00:00

  • microRNA 30A promotes autophagy in response to cancer therapy.

    abstract::microRNAs (miRNAs) are a class of small regulatory RNAs that regulate gene expression at the post-transcriptional level. miRNAs play important roles in the regulation of development, growth, and metastasis of cancer, and in determining the response of tumor cells to anticancer therapy. In recent years, they have also ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.20053

    authors: Yu Y,Cao L,Yang L,Kang R,Lotze M,Tang D

    更新日期:2012-05-01 00:00:00

  • Dual suppressive effect of MTORC1 on autophagy: tame the dragon by shackling both the head and the tail.

    abstract::The lysosome is a key subcellular organelle that receives and degrades macromolecules from endocytic, secretory and autophagic pathways. Lysosomal function is thus critical for an efficient autophagic process. However, the molecular mechanisms mediating lysosomal function upon autophagic induction are largely unknown....

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.23965

    authors: Zhou J,Tan SH,Codogno P,Shen HM

    更新日期:2013-05-01 00:00:00

  • m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7.

    abstract:N:6-methyladenosine (m6A), the most abundant internal modification on mRNAs in eukaryotes, play roles in adipogenesis. However, the underlying mechanism remains largely unclear. Here, we show that m6A plays a critical role in regulating macroautophagy/autophagy and adipogenesis through targeting Atg5 and Atg7. Mechanis...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1659617

    authors: Wang X,Wu R,Liu Y,Zhao Y,Bi Z,Yao Y,Liu Q,Shi H,Wang F,Wang Y

    更新日期:2020-07-01 00:00:00

  • Downregulation of autophagy through CUL3-KLHL20-mediated turnover of the ULK1 and PIK3C3/VPS34 complexes.

    abstract::The molecular mechanism of macroautophagy/autophagy induction has been intensively studied, but little is known about downregulation of autophagy and how this process is restricted. In particular, how is autophagy maintained at an appropriate homeostatic level when cells are subjected to prolonged stress? In this stud...

    journal_title:Autophagy

    pub_type: 评论,社论

    doi:10.1080/15548627.2016.1173802

    authors: Feng Y,Klionsky DJ

    更新日期:2016-07-02 00:00:00

  • In vivo imaging of autophagy in a mouse stroke model.

    abstract::Recent studies have suggested that autophagy is involved in a neural death pathway following cerebral ischemia. In vivo detection of autophagy could be important for evaluating ischemic neural cell damage for human stroke patients. Using novel green fluorescent protein (GFP)-fused microtubule-associated protein 1 ligh...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.8.13427

    authors: Tian F,Deguchi K,Yamashita T,Ohta Y,Morimoto N,Shang J,Zhang X,Liu N,Ikeda Y,Matsuura T,Abe K

    更新日期:2010-11-01 00:00:00