Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance.

Abstract:

:Breast cancer tissue contains a small population of cells that have the ability to self-renew; these cells are known as cancer stem-like cells (CSCs). We have recently shown that autophagy is essential for the tumorigenicity of these CSCs. Salinomycin (Sal), a K (+) /H (+) ionophore, has recently been shown to be at least 100 times more effective than paclitaxel in reducing the proportion of breast CSCs. However, its mechanisms of action are still unclear. We show here that Sal blocked both autophagy flux and lysosomal proteolytic activity in both CSCs and non-CSCs derived from breast cancer cells. GFP-LC3 staining combined with fluorescent dextran uptake and LysoTracker-Red staining showed that autophagosome/lysosome fusion was not altered by Sal treatment. Acridine orange staining provided evidence that lysosomes display the characteristics of acidic compartments in Sal-treated cells. However, tandem mCherry-GFP-LC3 assay indicated that the degradation of mCherry-GFP-LC3 is blocked by Sal. Furthermore, the protein degradation activity of lysosomes was inhibited, as demonstrated by the rate of long-lived protein degradation, DQ-BSA assay and measurement of cathepsin activity. Our data indicated that Sal has a relatively greater suppressant effect on autophagic flux in the ALDH (+) population in HMLER cells than in the ALDH (-) population; moreover, this differential effect on autophagic flux correlated with an increase in apoptosis in the ALDH (+) population. ATG7 depletion accelerated the proapoptotic capacity of Sal in the ALDH (+) population. Our findings provide new insights into how the autophagy-lysosomal pathway contributes to the ability of Sal to target CSCs in vitro.

journal_name

Autophagy

journal_title

Autophagy

authors

Yue W,Hamaï A,Tonelli G,Bauvy C,Nicolas V,Tharinger H,Codogno P,Mehrpour M

doi

10.4161/auto.23997

subject

Has Abstract

pub_date

2013-05-01 00:00:00

pages

714-29

issue

5

eissn

1554-8627

issn

1554-8635

pii

23997

journal_volume

9

pub_type

杂志文章
  • Glycogen: the missing link in neuronal autophagy?

    abstract::Macroautophagy/autophagy is an intracellular degradative pathway that is often induced as a pro-survival process for cells under stress. A few recent reports establish the role of the glycogen metabolic pathway in neuronal cell survival in conditions such as oxidative stress and hypoxia, and the possible link between ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1802090

    authors: Onkar A,Sheshadri D,Ganesh S

    更新日期:2020-11-01 00:00:00

  • Autophagy protects renal tubular cells against cyclosporine toxicity.

    abstract::A major side effect of the powerful immunosuppressive drug cyclosporine (CsA) is the development of a chronic nephrotoxicity whose mechanisms are not fully understood. Recent data suggest that tubular cells play a central role in the pathogenesis of chronic nephropathies. We have shown that CsA is responsible for endo...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6477

    authors: Pallet N,Bouvier N,Legendre C,Gilleron J,Codogno P,Beaune P,Thervet E,Anglicheau D

    更新日期:2008-08-01 00:00:00

  • The interplay between PRKCI/PKCλ/ι, SQSTM1/p62, and autophagy orchestrates the oxidative metabolic response that drives liver cancer.

    abstract::Hepatocellular carcinoma (HCC) is the consequence of chronic liver damage caused by the excessive generation of reactive oxygen species (ROS). To mitigate the deleterious effects of ROS, cells activate the transcription factor NFE2L2/NRF2, which is constitutively degraded through its partner KEAP1. The inactivation of...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2020.1797290

    authors: Moscat J,Diaz-Meco MT

    更新日期:2020-10-01 00:00:00

  • When more is less: excess and deficiency of autophagy coexist in skeletal muscle in Pompe disease.

    abstract::The role of autophagy, a catabolic lysosome-dependent pathway, has recently been recognized in a variety of disorders, including Pompe disease, which results from a deficiency of the glycogen-degrading lysosomal hydrolase acid-alpha glucosidase (GAA). Skeletal and cardiac muscle are most severely affected by the progr...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.1.7293

    authors: Raben N,Baum R,Schreiner C,Takikita S,Mizushima N,Ralston E,Plotz P

    更新日期:2009-01-01 00:00:00

  • Unconventional autophagy mediated by the WD40 domain of ATG16L1 is derailed by the T300A Crohn disease risk polymorphism.

    abstract::A coding polymorphism of the critical autophagic effector ATG16L1 (T300A) increases the risk of Crohn disease, but how this mutation influences the function of ATG16L1 has remained unclear. In a recent report, we showed that the A300 allele alters the ability of the C-terminal WD40 domain of ATG16L1 to interact with p...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1216303

    authors: Serramito-Gómez I,Boada-Romero E,Pimentel-Muiños FX

    更新日期:2016-11-01 00:00:00

  • Tipping the delicate balance: defining how proteasome maturation affects the degradation of a substrate for autophagy and endoplasmic reticulum associated degradation (ERAD).

    abstract::An increasing body of data links endoplasmic reticulum (ER) function to autophagy. Not surprisingly, then, some aberrant proteins in the ER can be destroyed either via ER associated degradation (ERAD), which is proteasome-mediated, or via autophagy. One such substrate is the "Z" variant of the alpha-1 protease inhibit...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.4906

    authors: Brodsky JL,Scott CM

    更新日期:2007-11-01 00:00:00

  • Astrocytes promote progression of breast cancer metastases to the brain via a KISS1-mediated autophagy.

    abstract::Formation of metastases, also known as cancer dissemination, is an important stage of breast cancer (BrCa) development. KISS1 expression is associated with inhibition of metastases development. Recently we have demonstrated that BrCa metastases to the brain exhibit low levels of KISS1 expression at both mRNA and prote...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1360466

    authors: Kaverina N,Borovjagin AV,Kadagidze Z,Baryshnikov A,Baryshnikova M,Malin D,Ghosh D,Shah N,Welch DR,Gabikian P,Karseladze A,Cobbs C,Ulasov IV

    更新日期:2017-01-01 00:00:00

  • IRGM Links Autoimmunity to Autophagy.

    abstract::IRGM is a genetic risk factor for several autoimmune diseases. However, the mechanism of IRGM-mediated protection in autoimmunity remains undetermined. The abnormal activation of type I interferon (IFN) response is one of the significant factors in the pathogenesis of several autoimmune diseases. In our recent study, ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1810920

    authors: Nath P,Jena KK,Mehto S,Chauhan NR,Sahu R,Dhar K,Srinivas K,Chauhan S,Chauhan S

    更新日期:2020-08-19 00:00:00

  • UVRAG: at the crossroad of autophagy and genomic stability.

    abstract::UVRAG is a promoter of the autophagy pathway, and its deficiency may fuel the development of cancers. Intriguingly, our recent study has demonstrated that this protein also mediates the repair of damaged DNA and patrols centrosome stability, mechanisms that commonly prevent cancer progression, in a manner independent ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.21035

    authors: Zhao Z,Ni D,Ghozalli I,Pirooz SD,Ma B,Liang C

    更新日期:2012-09-01 00:00:00

  • Artophagy: the art of autophagy--the Cvt pathway.

    abstract::Science informs art, and art informs science. Both processes involve creativity and imagination, and collaboration between scientists and artists often leads to new insights in both fields. We took advantage of the power of artistic imagery to demonstrate a dynamic cellular process, autophagy. In particular, we depict...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.1.10812

    authors: Goodsell DS,Klionsky DJ

    更新日期:2010-01-01 00:00:00

  • Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment.

    abstract::SNCA/α-synuclein aggregation plays a crucial role in synucleinopathies such as Parkinson disease and dementia with Lewy bodies. Aggregating and nonaggregating SNCA species are degraded by the autophagy-lysosomal pathway (ALP). Previously, we have shown that the ALP is not only responsible for SNCA degradation but is a...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.36436

    authors: Poehler AM,Xiang W,Spitzer P,May VE,Meixner H,Rockenstein E,Chutna O,Outeiro TF,Winkler J,Masliah E,Klucken J

    更新日期:2014-01-01 00:00:00

  • TARDBP/TDP-43 regulates autophagy in both MTORC1-dependent and MTORC1-independent manners.

    abstract::In a recent paper we addressed the mechanism by which defective autophagy contributes to TARDBP/TDP-43-mediated neurodegenerative disorders. We demonstrated that TARDBP regulates MTORC1-TFEB signaling by targeting RPTOR/raptor, a key component and an adaptor protein of MTORC1. Loss of TARDBP decreased the mRNA stabili...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1151596

    authors: Ying Z,Xia Q,Hao Z,Xu D,Wang M,Wang H,Wang G

    更新日期:2016-01-01 00:00:00

  • m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7.

    abstract:N:6-methyladenosine (m6A), the most abundant internal modification on mRNAs in eukaryotes, play roles in adipogenesis. However, the underlying mechanism remains largely unclear. Here, we show that m6A plays a critical role in regulating macroautophagy/autophagy and adipogenesis through targeting Atg5 and Atg7. Mechanis...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1659617

    authors: Wang X,Wu R,Liu Y,Zhao Y,Bi Z,Yao Y,Liu Q,Shi H,Wang F,Wang Y

    更新日期:2020-07-01 00:00:00

  • Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells.

    abstract::Salinomycin is perhaps the first promising compound that was discovered through high throughput screening in cancer stem cells. This novel agent can selectively eliminate breast and other cancer stem cells, though the mechanism of action remains unclear. In this study, we found that salinomycin induced autophagy in hu...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.24632

    authors: Li T,Su L,Zhong N,Hao X,Zhong D,Singhal S,Liu X

    更新日期:2013-07-01 00:00:00

  • The ULK1 complex: sensing nutrient signals for autophagy activation.

    abstract::The Atg1/ULK1 complex plays a central role in starvation-induced autophagy, integrating signals from upstream sensors such as MTOR and AMPK and transducing them to the downstream autophagy pathway. Much progress has been made in the last few years in understanding the mechanisms by which the complex is regulated throu...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.23323

    authors: Wong PM,Puente C,Ganley IG,Jiang X

    更新日期:2013-02-01 00:00:00

  • Cheating on ubiquitin with Atg8.

    abstract::Macroautophagy sequesters superflous cytosol and organelles into double-membraned autophagosomes. Over 30 autophagy-related (ATG) genes have been identified without elucidating the molecular details of autophagosome biogenesis. All proposed models for autophagosome formation require membrane fusion events (Fig. 1). Pr...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.2.14383

    authors: Krick R,Bremer S,Welter E,Eskelinen EL,Thumm M

    更新日期:2011-02-01 00:00:00

  • Impaired mitophagy at the heart of injury.

    abstract::Recent publications link mitophagy mediated by PINK1 and Parkin with cardioprotection and attenuation of inflammation and cell death. The field is in need of methods to monitor mitochondrial turnover in vivo to support the development of new therapies targeting mitochondrial turnover. ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.12.18175

    authors: Gottlieb RA,Mentzer RM Jr,Linton PJ

    更新日期:2011-12-01 00:00:00

  • The induction of autophagy by mechanical stress.

    abstract::The ability to respond and adapt to changes in the physical environment is a universal and essential cellular property. Here we demonstrated that cells respond to mechanical compressive stress by rapidly inducing autophagosome formation. We measured this response in both Dictyostelium and mammalian cells, indicating t...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.12.17924

    authors: King JS,Veltman DM,Insall RH

    更新日期:2011-12-01 00:00:00

  • Beyond autophagy: the role of UVRAG in membrane trafficking.

    abstract::Autophagy is a lysosome-directed membrane trafficking event for the degradation of cytoplasmic components, including organelles. The past few years have seen a great advance in our understanding of the cellular machinery of autophagosome biogenesis, the hallmark of autophagy. However, our global understanding of autop...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6496

    authors: Liang C,Sir D,Lee S,Ou JH,Jung JU

    更新日期:2008-08-01 00:00:00

  • STAT3 transcriptional factor activated by reactive oxygen species induces IL6 in starvation-induced autophagy of cancer cells.

    abstract::Autophagy is one of the survival processes of cancer cells, especially in stressful conditions such as starvation, hypoxia and chemotherapeutic agents. However, its roles in tumor survival have not yet been fully elucidated. Here, we found for the first time that JAK2/STAT3 was activated in HeLa cells when they were s...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.8.13547

    authors: Yoon S,Woo SU,Kang JH,Kim K,Kwon MH,Park S,Shin HJ,Gwak HS,Chwae YJ

    更新日期:2010-11-01 00:00:00

  • A histone point mutation that switches on autophagy.

    abstract::The multifaceted process of aging inevitably leads to disturbances in cellular metabolism and protein homeostasis. To meet this challenge, cells make use of autophagy, which is probably one of the most important pathways preserving cellular protection under stressful conditions. Thus, efficient autophagic flux is requ...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.4161/auto.28767

    authors: Eisenberg T,Schroeder S,Büttner S,Carmona-Gutierrez D,Pendl T,Andryushkova A,Mariño G,Pietrocola F,Harger A,Zimmermann A,Magnes C,Sinner F,Sedej S,Pieber TR,Dengjel J,Sigrist S,Kroemer G,Madeo F

    更新日期:2014-06-01 00:00:00

  • Autophagy, Inflammation, and Metabolism (AIM) Center in its second year.

    abstract::The NIH-funded center for autophagy research named Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center is now completing its second year as a working center with a mission to promote autophagy research locally, nationally...

    journal_title:Autophagy

    pub_type: 历史文章,杂志文章

    doi:10.1080/15548627.2019.1634444

    authors: Deretic V,Prossnitz E,Burge M,Campen MJ,Cannon J,Liu KJ,Liu M,Hall P,Sklar LA,Allers L,Mariscal L,Garcia SA,Weaver J,Baehrecke EH,Behrends C,Cecconi F,Codogno P,Chen GC,Elazar Z,Eskelinen EL,Fourie B,Gozuacik D

    更新日期:2019-10-01 00:00:00

  • Single-cell RNA sequencing highlights transcription activity of autophagy-related genes during hematopoietic stem cell formation in mouse embryos.

    abstract::Accumulating evidence has demonstrated that macroautophagy/autophagy plays an essential role in self-renewal and differentiation in embryonic hematopoiesis. Here, according to the RNA sequencing data sets of 5 population cells related to hematopoietic stem cell (HSC) formation during mouse embryogenesis (endothelial c...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1278093

    authors: Hu Y,Huang Y,Yi Y,Wang H,Liu B,Yu J,Wang D

    更新日期:2017-04-03 00:00:00

  • Autophagy modulator plays a part in UV protection.

    abstract::Ultraviolet (UV)-induced DNA damage is a major risk factor for skin cancers including melanoma. UVRAG, originally identified to complement UV sensitivity in xeroderma pigmentosum (XP), has since been implicated in modulating macroautophagy/autophagy, in coordinating different intracellular trafficking pathways, and in...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1196319

    authors: Yang Y,Quach C,Liang C

    更新日期:2016-09-01 00:00:00

  • A role for TOR complex 2 signaling in promoting autophagy.

    abstract::The conserved target of rapamycin (TOR) kinase is a central regulator of cell growth in response to nutrient availability. TOR forms 2 structurally and functionally distinct complexes, TORC1 and TORC2, and negatively regulates autophagy via TORC1. Here we demonstrate TOR also operates independently through the TORC2 s...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.36262

    authors: Vlahakis A,Powers T

    更新日期:2014-01-01 00:00:00

  • DJ-1 regulation of mitochondrial function and autophagy through oxidative stress.

    abstract::The dysregulation of mitochondrial function has been implicated in the pathogenesis of Parkinson disease. Mutations in the parkin, PINK1 and DJ-1 genes all result in recessive parkinsonism. Although the protein products of these genes have not been fully characterized, it has been established that all three contribute...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.5.14684

    authors: McCoy MK,Cookson MR

    更新日期:2011-05-01 00:00:00

  • Intracellular Staphylococcus aureus eludes selective autophagy by activating a host cell kinase.

    abstract::Autophagy, a catabolic pathway of lysosomal degradation, acts not only as an efficient recycle and survival mechanism during cellular stress, but also as an anti-infective machinery. The human pathogen Staphylococcus aureus (S. aureus) was originally considered solely as an extracellular bacterium, but is now recogniz...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1226732

    authors: Neumann Y,Bruns SA,Rohde M,Prajsnar TK,Foster SJ,Schmitz I

    更新日期:2016-11-01 00:00:00

  • Friend or food: different cues to the autophagosomal proteome.

    abstract::A hallmark of macroautophagy is the formation of autophagosomes, double-membrane vesicles that enwrap cellular components destined for lysosomal degradation. We examined autophagosomal protein dynamics under various inducing stimuli using a comprehensive mass spectrometry-based proteomics approach in combination with ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.20286

    authors: Becker AC,Bunkenborg J,Eisenberg T,Harder LM,Schroeder S,Madeo F,Andersen JS,Dengjel J

    更新日期:2012-06-01 00:00:00

  • Dimethyl α-ketoglutarate inhibits maladaptive autophagy in pressure overload-induced cardiomyopathy.

    abstract::It has been a longstanding problem to identify specific and efficient pharmacological modulators of autophagy. Recently, we found that depletion of acetyl-coenzyme A (AcCoA) induced autophagic flux, while manipulations designed to increase cytosolic AcCoA efficiently inhibited autophagy. Thus, the cell permeant ester ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.28235

    authors: Mariño G,Pietrocola F,Kong Y,Eisenberg T,Hill JA,Madeo F,Kroemer G

    更新日期:2014-05-01 00:00:00

  • Localized de novo phospholipid synthesis drives autophagosome biogenesis.

    abstract::During (macro)autophagy, cells form transient organelles, termed autophagosomes, to target a broad spectrum of substrates for degradation critical to cellular and organismal health. Driven by rapid membrane assembly, an initially small vesicle (phagophore) elongates into a large cup-shaped structure to engulf substrat...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1725379

    authors: Schütter M,Graef M

    更新日期:2020-04-01 00:00:00