The ULK1 complex: sensing nutrient signals for autophagy activation.

Abstract:

:The Atg1/ULK1 complex plays a central role in starvation-induced autophagy, integrating signals from upstream sensors such as MTOR and AMPK and transducing them to the downstream autophagy pathway. Much progress has been made in the last few years in understanding the mechanisms by which the complex is regulated through protein-protein interactions and post-translational modifications, providing insights into how the cell modulates autophagy, particularly in response to nutrient status. However, how the ULK1 complex transduces upstream signals to the downstream central autophagy pathway is still unclear. Although the protein kinase activity of ULK1 is required for its autophagic function, its protein substrate(s) responsible for autophagy activation has not been identified. Furthermore, examples of potential ULK1-independent autophagy have emerged, indicating that under certain specific contexts, the ULK1 complex might be dispensable for autophagy activation. This raises the question of how the autophagic machinery is activated independent of the ULK1 complex and what are the biological functions of such noncanonical autophagy pathways.

journal_name

Autophagy

journal_title

Autophagy

authors

Wong PM,Puente C,Ganley IG,Jiang X

doi

10.4161/auto.23323

subject

Has Abstract

pub_date

2013-02-01 00:00:00

pages

124-37

issue

2

eissn

1554-8627

issn

1554-8635

pii

23323

journal_volume

9

pub_type

杂志文章,评审
  • The combination of a histone deacetylase inhibitor with the BH3-mimetic GX15-070 has synergistic antileukemia activity by activating both apoptosis and autophagy.

    abstract::We analyzed the cellular and molecular effects of two different histone deacetylase inhibitors (HDACi), MGCD0103 and vorinostat, in combination with GX15-070, a BH3-mimetic, in acute myeloid leukemia (AML) cell lines and primary AML cells, and demonstrated that the combination has a synergistic antileukemia effect. We...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.7.13117

    authors: Wei Y,Kadia T,Tong W,Zhang M,Jia Y,Yang H,Hu Y,Viallet J,O'Brien S,Garcia-Manero G

    更新日期:2010-10-01 00:00:00

  • Q6, a novel hypoxia-targeted drug, regulates hypoxia-inducible factor signaling via an autophagy-dependent mechanism in hepatocellular carcinoma.

    abstract::Tumor hypoxia underlies treatment failure and yields more aggressive and metastatic cancer phenotypes. Although therapeutically targeting these hypoxic environments has been proposed for many years, to date no approaches have shown the therapeutic value to gain regulatory approval. Here, we demonstrated that a novel h...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26838

    authors: Liu XW,Cai TY,Zhu H,Cao J,Su Y,Hu YZ,He QJ,Yang B

    更新日期:2014-01-01 00:00:00

  • Posttranslational modification of autophagy-related proteins in macroautophagy.

    abstract::Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/15548627.2014.984267

    authors: Xie Y,Kang R,Sun X,Zhong M,Huang J,Klionsky DJ,Tang D

    更新日期:2015-01-01 00:00:00

  • Selective autophagy inhibition through disruption of the PIK3C3-containing complex I.

    abstract::The PIK3C3/VPS34-containing phosphatidylinositol 3-kinase (PtdIns3K) initiation complex (complex I) is necessary for macroautophagy/autophagy initiation and is comprised of PIK3R4/VPS15-PIK3C3/VPS34-BECN1-ATG14, while the endosomal trafficking complex (complex II) is necessary for vesicle trafficking and is comprised ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1786268

    authors: Pavlinov I,Salkovski M,Aldrich LN

    更新日期:2020-08-01 00:00:00

  • An integrative multi-omics approach uncovers the regulatory role of CDK7 and CDK4 in autophagy activation induced by silica nanoparticles.

    abstract::Dysfunction of macroautophagy/autophagy has been postulated as a major cellular toxicological response to nanomaterials. It has been reported that excessive autophagy activation, induced by silica nanoparticles (SiNPs), contributes to autophagy dysfunction, whereas little is known how SiNPs trigger autophagy activatio...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1763019

    authors: Ruan C,Wang C,Gong X,Zhang Y,Deng W,Zhou J,Huang D,Wang Z,Zhang Q,Guo A,Lu J,Gao J,Peng D,Xue Y

    更新日期:2020-05-23 00:00:00

  • Vitamin D improves sunburns by increasing autophagy in M2 macrophages.

    abstract::Cutaneous inflammation from UV radiation exposure causes epidermal damage, cellular infiltration, and secretion of pro-inflammatory mediators that exacerbate tissue destruction. Recovery is mediated chiefly by anti-inflammatory M2 macrophages that suppress inflammation and augment epidermal regeneration. Vitamin D ena...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1569298

    authors: Das LM,Binko AM,Traylor ZP,Peng H,Lu KQ

    更新日期:2019-05-01 00:00:00

  • Essential role of autophagy in resource allocation during sexual reproduction.

    abstract::Sexual reproduction is the most common form of reproduction among eukaryotes, which is characterized by a series of massive cellular or tissue renovations. Recent studies have revealed novel functions of autophagy during sexual reproductive processes, ranging from yeast to mammals. In mammals, autophagy is indispensab...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.1080/15548627.2019.1628543

    authors: Gao H,Khawar MB,Li W

    更新日期:2020-01-01 00:00:00

  • The recycling endosome protein RAB-10 promotes autophagic flux and localization of the transmembrane protein ATG-9.

    abstract::Macroautophagy/autophagy involves the formation of an autophagosome, a double-membrane vesicle that delivers sequestered cytoplasmic cargo to lysosomes for degradation and recycling. Closely related, endocytosis mediates the sorting and transport of cargo throughout the cell, and both processes are important for cellu...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1356976

    authors: Palmisano NJ,Rosario N,Wysocki M,Hong M,Grant B,Meléndez A

    更新日期:2017-10-03 00:00:00

  • Systemic regulation of autophagy in Caenorhabditis elegans.

    abstract::When no supply of environmental nutrients is available, cells induce autophagy, thereby generating a source of emergency metabolic substrates and energy to maintain the basal cellular activity needed for survival. This autophagy response to starvation has been well characterized in various multicellular organisms, inc...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.4.8171

    authors: Kang C,Avery L

    更新日期:2009-05-01 00:00:00

  • A life-span extending form of autophagy employs the vacuole-vacuole fusion machinery.

    abstract::While autophagy is believed to be beneficial for life-span extension, it is controversial which forms or aspects of autophagy are responsible for this effect. We addressed this topic by analyzing the life span of yeast autophagy mutants under caloric restriction, a longevity manipulation. Surprisingly, we discovered t...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6556

    authors: Tang F,Watkins JW,Bermudez M,Gray R,Gaban A,Portie K,Grace S,Kleve M,Craciun G

    更新日期:2008-10-01 00:00:00

  • Autophagy proteins are not universally required for phagosome maturation.

    abstract::Phagocytosis plays a central role in immunity and tissue homeostasis. After internalization of cargo into single-membrane phagosomes, these compartments undergo a maturation sequences that terminates in lysosome fusion and cargo degradation. Components of the autophagy pathway have recently been linked to phagosome ma...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1191724

    authors: Cemma M,Grinstein S,Brumell JH

    更新日期:2016-09-01 00:00:00

  • Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells.

    abstract::Salinomycin is perhaps the first promising compound that was discovered through high throughput screening in cancer stem cells. This novel agent can selectively eliminate breast and other cancer stem cells, though the mechanism of action remains unclear. In this study, we found that salinomycin induced autophagy in hu...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.24632

    authors: Li T,Su L,Zhong N,Hao X,Zhong D,Singhal S,Liu X

    更新日期:2013-07-01 00:00:00

  • Unsaturation, curvature and charge: effects of membrane parameters on PIK3C3/VPS34-containing complexes.

    abstract::Phosphatidylinositol-3-phosphate (PtdIns3P) is essential for generating autophagosomes and regulating endocytic trafficking. Recently, we have shown that the activities of human PIK3C3/VPS34-containing complexes I and II, which synthesize PtdIns3P, are greatly affected by three membrane physicochemical parameters: lip...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2021.1872190

    authors: Ohashi Y,Tremel S,Williams RL

    更新日期:2021-01-15 00:00:00

  • Dual role of Atg1 in regulation of autophagy-specific PAS assembly in Saccharomyces cerevisiae.

    abstract::Most autophagy-related (Atg) proteins are assembled at the phagophore assembly site or pre-autophagosomal structure (PAS), which is a potential site for vesicle formation during vegetative or starvation conditions. To understand the initial step of vesicle formation, it is important to know how Atg proteins are recrui...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6375

    authors: Cheong H,Klionsky DJ

    更新日期:2008-07-01 00:00:00

  • Targeting MCL1 to induce mitophagy is a potential therapeutic strategy for Alzheimer disease.

    abstract::Mitochondrial dysfunction is associated with the occurrence of a variety of neurodegenerative diseases, especially Alzheimer disease (AD). As a mitochondrial quality control process, mitophagy is greatly inhibited in AD; increasing evidence shows that the induction of mitophagy is an effective therapeutic intervention...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1860542

    authors: Cen X,Xu X,Xia H

    更新日期:2020-12-20 00:00:00

  • Tipping the delicate balance: defining how proteasome maturation affects the degradation of a substrate for autophagy and endoplasmic reticulum associated degradation (ERAD).

    abstract::An increasing body of data links endoplasmic reticulum (ER) function to autophagy. Not surprisingly, then, some aberrant proteins in the ER can be destroyed either via ER associated degradation (ERAD), which is proteasome-mediated, or via autophagy. One such substrate is the "Z" variant of the alpha-1 protease inhibit...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.4906

    authors: Brodsky JL,Scott CM

    更新日期:2007-11-01 00:00:00

  • UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy.

    abstract::The islet in type 2 diabetes mellitus (T2DM) is characterized by a deficit in β-cells and increased β-cell apoptosis attributable at least in part to intracellular toxic oligomers of IAPP (islet amyloid polypeptide). β-cells of individuals with T2DM are also characterized by accumulation of polyubiquitinated proteins ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.28478

    authors: Costes S,Gurlo T,Rivera JF,Butler PC

    更新日期:2014-06-01 00:00:00

  • Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation.

    abstract::The vascular system of plants consists of two conducting tissues, xylem and phloem, which differentiate from procambium cells. Xylem serves as a transporting system for water and signaling molecules and is formed by sequential developmental processes, including cell division/expansion, secondary cell wall deposition, ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.8.13429

    authors: Kwon SI,Cho HJ,Park OK

    更新日期:2010-11-01 00:00:00

  • Downregulation of autophagy by herpesvirus Bcl-2 homologs.

    abstract::The critical role of the cellular autophagy pathway in viral infection and pathogenesis has become increasingly apparent. Mounting evidences suggest that viruses have developed different strategies to meticulously modulate intracellular autophagy for their own benefits, thereby either promoting efficient viral replica...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.5210

    authors: Liang C,E X,Jung JU

    更新日期:2008-04-01 00:00:00

  • The Golgi as a potential membrane source for autophagy.

    abstract::In macroautophagy (hereafter autophagy), a morphological hallmark is the formation of double-membrane vesicles called autophagosomes that sequester and deliver cytoplasmic components to the lysosome/vacuole for degradation. This process begins with an initial sequestering compartment, the phagophore, which expands int...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.7.13009

    authors: Geng J,Klionsky DJ

    更新日期:2010-10-01 00:00:00

  • LAMP2A as a therapeutic target in Parkinson disease.

    abstract::Abnormal aggregation of SNCA/?-synuclein plays a crucial role in Parkinson disease (PD) pathogenesis. SNCA levels determine its toxicity, and its accumulation, even to a small extent, may be a risk factor for neurodegeneration. One of the main pathways for SNCA degradation is chaperone-mediated autophagy (CMA), a sele...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26451

    authors: Xilouri M,Brekk OR,Kirik D,Stefanis L

    更新日期:2013-12-01 00:00:00

  • The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14.

    abstract::ULK1 (unc-51 like autophagy activating kinase 1), the key mediator of MTORC1 signaling to autophagy, regulates early stages of autophagosome formation in response to starvation or MTORC1 inhibition. How ULK1 regulates the autophagy induction process remains elusive. Here, we identify that ATG13, a binding partner of U...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1140293

    authors: Park JM,Jung CH,Seo M,Otto NM,Grunwald D,Kim KH,Moriarity B,Kim YM,Starker C,Nho RS,Voytas D,Kim DH

    更新日期:2016-01-01 00:00:00

  • Processing of proteins in autophagy vesicles of antigen-presenting cells generates citrullinated peptides recognized by the immune system.

    abstract::Our laboratory has been investigating for some time the nature of the response of T lymphocytes in autoimmunity in the reactions against self-proteins that result in a number of diseases, such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis (RA) and others. T cells recognize peptides generated from protei...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.19261

    authors: Ireland JM,Unanue ER

    更新日期:2012-03-01 00:00:00

  • MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age.

    abstract::To study mitochondrial protein age dynamics, we targeted a time-sensitive fluorescent protein, MitoTimer, to the mitochondrial matrix. Mitochondrial age was revealed by the integrated portions of young (green) and old (red) MitoTimer protein. Mitochondrial protein age was dependent on turnover rates as pulsed synthesi...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26503

    authors: Ferree AW,Trudeau K,Zik E,Benador IY,Twig G,Gottlieb RA,Shirihai OS

    更新日期:2013-11-01 00:00:00

  • Macroautophagy: protector in the diabetes drama?

    abstract::Macroautophagy ("autophagy") is regulated by the same insulin-amino acid-mTOR signaling pathway that controls protein synthesis. Although the literature does not so far include any direct studies confirming this, we expect autophagy to increase during insulin resistance. We discuss the possibility that this may be a u...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.4449

    authors: Meijer AJ,Codogno P

    更新日期:2007-09-01 00:00:00

  • Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells.

    abstract::Neuroepithelial cells undergoing differentiation efficiently remodel their cytoskeleton and shape in an energy-consuming process. The capacity of autophagy to recycle cellular components and provide energy could fulfill these requirements, thus supporting differentiation. However, little is known regarding the role of...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.8.2.18535

    authors: Vázquez P,Arroba AI,Cecconi F,de la Rosa EJ,Boya P,de Pablo F

    更新日期:2012-02-01 00:00:00

  • Eating on the fly: function and regulation of autophagy during cell growth, survival and death in Drosophila.

    abstract::Significant progress has been made over recent years in defining the normal progression and regulation of autophagy, particularly in cultured mammalian cells and yeast model systems. However, apart from a few notable exceptions, our understanding of the physiological roles of autophagy has lagged behind these advances...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.5782

    authors: Neufeld TP,Baehrecke EH

    更新日期:2008-07-01 00:00:00

  • Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy.

    abstract::Oxidative stress-induced granulosa cell (GCs) death represents a common reason for follicular atresia. Follicle-stimulating hormone (FSH) has been shown to prevent GCs from oxidative injury, although the underlying mechanism remains to be elucidated. Here we first report that the suppression of autophagic cell death v...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1327941

    authors: Shen M,Jiang Y,Guan Z,Cao Y,Li L,Liu H,Sun SC

    更新日期:2017-08-03 00:00:00

  • microRNA 30A promotes autophagy in response to cancer therapy.

    abstract::microRNAs (miRNAs) are a class of small regulatory RNAs that regulate gene expression at the post-transcriptional level. miRNAs play important roles in the regulation of development, growth, and metastasis of cancer, and in determining the response of tumor cells to anticancer therapy. In recent years, they have also ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.20053

    authors: Yu Y,Cao L,Yang L,Kang R,Lotze M,Tang D

    更新日期:2012-05-01 00:00:00

  • Unconventional autophagy mediated by the WD40 domain of ATG16L1 is derailed by the T300A Crohn disease risk polymorphism.

    abstract::A coding polymorphism of the critical autophagic effector ATG16L1 (T300A) increases the risk of Crohn disease, but how this mutation influences the function of ATG16L1 has remained unclear. In a recent report, we showed that the A300 allele alters the ability of the C-terminal WD40 domain of ATG16L1 to interact with p...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1216303

    authors: Serramito-Gómez I,Boada-Romero E,Pimentel-Muiños FX

    更新日期:2016-11-01 00:00:00