Macroautophagy: protector in the diabetes drama?

Abstract:

:Macroautophagy ("autophagy") is regulated by the same insulin-amino acid-mTOR signaling pathway that controls protein synthesis. Although the literature does not so far include any direct studies confirming this, we expect autophagy to increase during insulin resistance. We discuss the possibility that this may be a useful mechanism for eliminating damaged mitochondria and other cell structures to prevent cell death.

journal_name

Autophagy

journal_title

Autophagy

authors

Meijer AJ,Codogno P

doi

10.4161/auto.4449

subject

Has Abstract

pub_date

2007-09-01 00:00:00

pages

523-6

issue

5

eissn

1554-8627

issn

1554-8635

pii

4449

journal_volume

3

pub_type

杂志文章
  • Repairing DNA damage by XRCC6/KU70 reverses TLR4-deficiency-worsened HCC development via restoring senescence and autophagic flux.

    abstract::Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the human population. The initiation and progression of HCC is closely associated with chronic liver inflammation. Recent research indicates that nonhomologous end joining (NHEJ), one of the DNA repair mechanisms, autophagy and senescence...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.24229

    authors: Wang Z,Lin H,Hua F,Hu ZW

    更新日期:2013-06-01 00:00:00

  • Implications of autophagy in anthrax pathogenicity.

    abstract::The etiological agent for anthrax is Bacillus anthracis, which produces lethal toxin (LT) that exerts a myriad of effects on many immune cells. In our previous study, it was demonstrated that LT and protective antigen (PA) induce autophagy in mammalian cells. Preliminary results suggest that autophagy may function as ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.5.8567

    authors: Tan YK,Vu HA,Kusuma CM,Wu A

    更新日期:2009-07-01 00:00:00

  • Autophagy and innate immunity: Insights from invertebrate model organisms.

    abstract::Macroautophagy/autophagy is a fundamental intracellular degradation process with multiple roles in immunity, including direct elimination of intracellular microorganisms via 'xenophagy.' In this review, we summarize studies from the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans that highlig...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.1080/15548627.2017.1389824

    authors: Kuo CJ,Hansen M,Troemel E

    更新日期:2018-01-01 00:00:00

  • Stimulation of ATG12-ATG5 conjugation by ribonucleic acid.

    abstract::The ubiquitin-like conjugation reactions, ATG8/microtubule-associated protein 1 light chain 3/MAP1LC3 (LC3) to phosphatidylethanolamine (PE) and ATG12 to ATG5, are biochemical hallmarks for autophagy, a cellular process that degrades bulk cellular proteins and organelles. The two conjugation reactions share the same E...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.3270

    authors: Shao Y,Gao Z,Feldman T,Jiang X

    更新日期:2007-01-01 00:00:00

  • Artophagy: the art of autophagy--the Cvt pathway.

    abstract::Science informs art, and art informs science. Both processes involve creativity and imagination, and collaboration between scientists and artists often leads to new insights in both fields. We took advantage of the power of artistic imagery to demonstrate a dynamic cellular process, autophagy. In particular, we depict...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.1.10812

    authors: Goodsell DS,Klionsky DJ

    更新日期:2010-01-01 00:00:00

  • Broadening the therapeutic scope for rapamycin treatment.

    abstract::The role of autophagy in the degradation of aggregate-prone proteins has been well established. As a result, autophagy upregulation has become an attractive therapeutic strategy for the treatment of proteinopathies, a group of diseases caused by the accumulation of mutant misfolded proteins. We have previously shown t...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.2.11078

    authors: Menzies FM,Rubinsztein DC

    更新日期:2010-02-01 00:00:00

  • A life-span extending form of autophagy employs the vacuole-vacuole fusion machinery.

    abstract::While autophagy is believed to be beneficial for life-span extension, it is controversial which forms or aspects of autophagy are responsible for this effect. We addressed this topic by analyzing the life span of yeast autophagy mutants under caloric restriction, a longevity manipulation. Surprisingly, we discovered t...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6556

    authors: Tang F,Watkins JW,Bermudez M,Gray R,Gaban A,Portie K,Grace S,Kleve M,Craciun G

    更新日期:2008-10-01 00:00:00

  • Mitochondrial elongation during autophagy: a stereotypical response to survive in difficult times.

    abstract::Mitochondrial morphological and structural changes play a role in several cellular processes, including apoptosis. We recently reported that mitochondrial elongation is also critical to sustain cell viability during macroautophagy. During macroautophagy unopposed mitochondrial fusion leads to organelle elongation both...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.10.16771

    authors: Gomes LC,Scorrano L

    更新日期:2011-10-01 00:00:00

  • Mutation at the cargo-receptor binding site of Atg8 also affects its general autophagy regulation function.

    abstract::Autophagy is a highly conserved degradation pathway for intracellular macromolecules and organelles. Among those characterized autophagy regulators, the ubiquitin-like protein Atg8 is found to be a membrane modifier that both regulates biogenesis of transport vesicles and interacts with the cargo receptor Atg19 for se...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.4.7696

    authors: Ho KH,Chang HE,Huang WP

    更新日期:2009-05-01 00:00:00

  • Autophagy-independent incorporation of GFP-LC3 into protein aggregates is dependent on its interaction with p62/SQSTM1.

    abstract::LC3 is a widely used marker of autophagosomes in mammalian cells. However, in addition to its autophagosomal localization, GFP-LC3 is often found associated with protein aggregates that are formed in an autophagy-independent manner. In addition, LC3 directly interacts with p62/SQSTM1 (hereafter named p62), a common co...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6823

    authors: Shvets E,Elazar Z

    更新日期:2008-11-01 00:00:00

  • NPC-phagy: selective autophagy of the nuclear pore complexes.

    abstract::Selective autophagy is critical for the regulation of cellular homeostasis in organisms from yeast to humans. This process is a specific degradation pathway for a wide variety of substrates including unwanted cytosolic components, such as protein aggregates, damaged and/or superfluous organelles, and pathogens. Howeve...

    journal_title:Autophagy

    pub_type: 社论

    doi:10.1080/15548627.2020.1798199

    authors: Yin Z,Klionsky DJ

    更新日期:2020-10-01 00:00:00

  • The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations.

    abstract::Mitochondrial dysfunction is an early sign of many neurodegenerative diseases. Very recently, two Parkinson disease (PD) associated genes, PINK1 and Parkin, were shown to mediate the degradation of damaged mitochondria via selective autophagy (mitophagy). PINK1 kinase activity is needed for prompt and efficient Parkin...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.7.13286

    authors: Geisler S,Holmström KM,Treis A,Skujat D,Weber SS,Fiesel FC,Kahle PJ,Springer W

    更新日期:2010-10-01 00:00:00

  • A role for Atg8-PE deconjugation in autophagosome biogenesis.

    abstract::Formation of the autophagosome is likely the most complex step of macroautophagy, and indeed it is the morphological and functional hallmark of this process; accordingly, it is critical to understand the corresponding molecular mechanism. Atg8 is the only known autophagy-related (Atg) protein required for autophagosom...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.19385

    authors: Nair U,Yen WL,Mari M,Cao Y,Xie Z,Baba M,Reggiori F,Klionsky DJ

    更新日期:2012-05-01 00:00:00

  • Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein.

    abstract::KRAS is the most frequently mutated oncogene in human neoplasia. Despite a large investment to understand the effects of KRAS mutation in cancer cells, the direct effects of the oncogenetic KRAS activation on immune cells remain elusive. Here, we report that extracellular KRASG12D is essential for pancreatic tumor-ass...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1714209

    authors: Dai E,Han L,Liu J,Xie Y,Kroemer G,Klionsky DJ,Zeh HJ,Kang R,Wang J,Tang D

    更新日期:2020-11-01 00:00:00

  • One step closer to understanding mammalian macroautophagy initiation: Interplay of 2 HORMA architectures in the ULK1 complex.

    abstract::ULK1 and ATG13 assemble with RB1CC1/FIP200 and ATG101 to form a macroautophagy (hereafter autophagy) induction (ULK1) complex in higher eukaryotes. The yeast counterpart, the Atg1 complex, is comprised of Atg1 and Atg13 (ULK1 and ATG13 homologs), Atg17 (a proposed functional homolog of RB1CC1), and either the Atg101 s...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1087635

    authors: Popelka H,Klionsky DJ

    更新日期:2015-11-02 00:00:00

  • Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome.

    abstract::Based on a functional categorization, proteins may be grouped into three types and sorted to either the proteasome or the macroautophagy pathway for degradation. The two pathways are mechanistically connected but their capacity seems different. Macroautophagy can degrade all forms of misfolded proteins whereas proteas...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.5190

    authors: Ding WX,Yin XM

    更新日期:2008-02-01 00:00:00

  • The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration.

    abstract::Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of th...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.1080/15548627.2017.1384889

    authors: Uversky VN

    更新日期:2017-01-01 00:00:00

  • Manipulation of autophagy by MIR375 generates antitumor effects in liver cancer.

    abstract::The exploration into the roles of autophagy in tumorigenesis, either as tumor suppressor or tumor promoter, has led to a great increase in the knowledge of cancer development, progression and treatment. However, there is currently no consensus on how to manipulate autophagy to improve antitumor effects. In this study,...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.21796

    authors: Chang Y,Lin J,Tsung A

    更新日期:2012-12-01 00:00:00

  • SIRT5 regulation of ammonia-induced autophagy and mitophagy.

    abstract::In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved i...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1009778

    authors: Polletta L,Vernucci E,Carnevale I,Arcangeli T,Rotili D,Palmerio S,Steegborn C,Nowak T,Schutkowski M,Pellegrini L,Sansone L,Villanova L,Runci A,Pucci B,Morgante E,Fini M,Mai A,Russo MA,Tafani M

    更新日期:2015-01-01 00:00:00

  • Progesterone receptor membrane component 1/Sigma-2 receptor associates with MAP1LC3B and promotes autophagy.

    abstract::Autophagy resembles a recycling process in which proteins, organelles, or regions of the cytoplasm are enveloped and degraded. We have found that two of the central autophagy proteins, MAP1LC3 (microtubule-associated protein 1 light chain 3, also described as LC3) and UVRAG (UV radiation resistance associated/UV radia...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.25889

    authors: Mir SU,Schwarze SR,Jin L,Zhang J,Friend W,Miriyala S,St Clair D,Craven RJ

    更新日期:2013-10-01 00:00:00

  • Localized de novo phospholipid synthesis drives autophagosome biogenesis.

    abstract::During (macro)autophagy, cells form transient organelles, termed autophagosomes, to target a broad spectrum of substrates for degradation critical to cellular and organismal health. Driven by rapid membrane assembly, an initially small vesicle (phagophore) elongates into a large cup-shaped structure to engulf substrat...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1725379

    authors: Schütter M,Graef M

    更新日期:2020-04-01 00:00:00

  • Retromer regulates the lysosomal clearance of MAPT/tau.

    abstract::The macroautophagy/autophagy-lysosome axis enables the clearance and degradation of cytoplasmic components including protein aggregates, damaged organelles and invading pathogens. Protein aggregation and lysosomal system dysfunction in the brain are common features of several late-onset neurological disorders includin...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1821545

    authors: Carosi JM,Hein LK,van den Hurk M,Adams R,Milky B,Singh S,Bardy C,Denton D,Kumar S,Sargeant TJ

    更新日期:2020-09-22 00:00:00

  • ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding.

    abstract::Protein synthesis and autophagy work as two opposing processes to control cell growth in response to nutrient supply. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway, which acts as a master regulator to control protein synthesis, has recently been shown to inhibit autophagy by phosphorylating ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.7.15491

    authors: Dunlop EA,Hunt DK,Acosta-Jaquez HA,Fingar DC,Tee AR

    更新日期:2011-07-01 00:00:00

  • Coordinate regulation of autophagy and the ubiquitin proteasome system by MTOR.

    abstract::Proteins in eukaryotic cells are continually being degraded to amino acids either by the ubiquitin proteasome system (UPS) or by the autophagic-lysosomal pathway. The breakdown of proteins by these 2 degradative pathways involves totally different enzymes that function in distinct subcellular compartments. While most ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1205770

    authors: Zhao J,Goldberg AL

    更新日期:2016-10-02 00:00:00

  • Targeting MCL1 to induce mitophagy is a potential therapeutic strategy for Alzheimer disease.

    abstract::Mitochondrial dysfunction is associated with the occurrence of a variety of neurodegenerative diseases, especially Alzheimer disease (AD). As a mitochondrial quality control process, mitophagy is greatly inhibited in AD; increasing evidence shows that the induction of mitophagy is an effective therapeutic intervention...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1860542

    authors: Cen X,Xu X,Xia H

    更新日期:2020-12-20 00:00:00

  • The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance.

    abstract::Loss-of-function mutations in PARK2/PARKIN and PINK1 cause early-onset autosomal recessive Parkinson disease (PD). The cytosolic E3 ubiquitin-protein ligase PARK2 cooperates with the mitochondrial kinase PINK1 to maintain mitochondrial quality. A loss of mitochondrial transmembrane potential (ΔΨ) leads to the PINK1-de...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.25884

    authors: Bertolin G,Ferrando-Miguel R,Jacoupy M,Traver S,Grenier K,Greene AW,Dauphin A,Waharte F,Bayot A,Salamero J,Lombès A,Bulteau AL,Fon EA,Brice A,Corti O

    更新日期:2013-11-01 00:00:00

  • Role of autophagy in the host defense against Toxoplasma gondii in astrocytes.

    abstract::Autophagy has recently been implicated in the host defense against the intracellular protozoan pathogen, Toxoplasma gondii, a major opportunistic pathogen of the central nervous system in immunosuppressed individuals. In both IFN gamma-activated macrophages and astrocytes, the p47 GTPases traffic to the T. gondii para...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.2.7637

    authors: Halonen SK

    更新日期:2009-02-01 00:00:00

  • LAMP-2: a control step for phagosome and autophagosome maturation.

    abstract::The two structurally related, major lysosomal membrane proteins LAMP-1 and LAMP-2 were for a long time regarded as crucial for the protection of the lysosomal membrane from the hostile lumenal environment. However, recent studies on the effects of single and combined LAMP-deficiency in mice reveal alternative function...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5724

    authors: Saftig P,Beertsen W,Eskelinen EL

    更新日期:2008-05-01 00:00:00

  • MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age.

    abstract::To study mitochondrial protein age dynamics, we targeted a time-sensitive fluorescent protein, MitoTimer, to the mitochondrial matrix. Mitochondrial age was revealed by the integrated portions of young (green) and old (red) MitoTimer protein. Mitochondrial protein age was dependent on turnover rates as pulsed synthesi...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26503

    authors: Ferree AW,Trudeau K,Zik E,Benador IY,Twig G,Gottlieb RA,Shirihai OS

    更新日期:2013-11-01 00:00:00

  • Reticulocyte mitophagy: monitoring mitochondrial clearance in a mammalian model.

    abstract::Mitochondria are the primary site of energy production in animal cells. In mitochondria, the flow of electrons through the electron transport chain creates a potential difference across the inner membrane, which is utilized for ATP production. However, due to inherent inefficiencies in electron transport, reactive oxy...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.3.11245

    authors: Zhang J,Ney PA

    更新日期:2010-04-01 00:00:00